Skip to main content
Log in

Free energy measurements by the generalized fluctuation theorems: Theory and numerical study of a model filament

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

We measure the free energy of a model filament, which undergoes deformations and structural transitions, as a function of its extension, in silico. We perform Brownian Dynamics (BD) simulations of pulling experiments at various speeds, following a protocol close to experimental ones. The results from the fluctuation theorems are compared with the estimates from Monte Carlo (MC) simulation, where the rugged free energy landscape is produced by the density of states method. The fluctuation theorems (FT) give accurate estimates of the free energy up to moderate pulling speeds. At higher pulling speeds, the work distributions do not efficiently sample the domain of small work and FT slightly overestimates free energy. In order to comprehend the differences, we analyze the work distributions from the BD simulations in the framework of trajectory thermodynamics and propose the generalized fluctuation theorems that take into account the information (relative entropy) evaluated in the expanded phase space. The measured work - free energy relation is consistent with the results obtained from the generalized fluctuation theorems. We discuss operational methods to improve the estimates at high pulling speed.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J.M. Parrondo, J.M. Horowitz, T. Sagawa, Nat. Phys. 11, 131 (2015)

    Article  Google Scholar 

  2. U. Seifert, Phys. Rev. Lett. 95, 040602 (2005)

    Article  ADS  Google Scholar 

  3. C. Jarzynski, Phys. Rev. E 56, 5018 (1997)

    Article  ADS  Google Scholar 

  4. C. Jarzynski, J. Stat. Mech.: Theor. Exp. 2004, P09005 (2004)

    Article  Google Scholar 

  5. C. Jarzynski, Annu. Rev. Condens. Matter Phys. 2, 329 (2011)

    Article  ADS  Google Scholar 

  6. E. Boksenbojm, B. Wynants, C. Jarzynski, Physica A 389, 4416 (2010)

    Article  ADS  Google Scholar 

  7. G. Crooks, J. Stat. Phys. 90, 1481 (1998)

    Article  ADS  Google Scholar 

  8. G. Crooks, Phys. Rev. E 60, 2721 (1999)

    Article  ADS  Google Scholar 

  9. J. Liphardt, S. Dumont, S.B. Smith, I. Tinoco, C. Bustamante, Science 296, 1832 (2002)

    Article  ADS  Google Scholar 

  10. D. Collin, F. Ritort, C. Jarzynski, S.B. Smith, I. Tinoco jr., C. Bustamante, Nature 437, 231 (2005)

    Article  ADS  Google Scholar 

  11. U. Seifert, Eur. Phys. J. B 64, 423 (2008)

    Article  ADS  Google Scholar 

  12. J. Farago, J. Stat. Phys. 107, 781 (2002)

    Article  ADS  Google Scholar 

  13. S. Cocco, J. Yan, D. Leger, J.-F. Chatenay, J.F. Marko, Phys. Rev. E 70, 011910 (2004)

    Article  ADS  Google Scholar 

  14. A. Herbert, A. Rich, J. Biol. Chem. 271, 11595 (1996)

    Article  Google Scholar 

  15. L. Peck, J. Wang, Proc. Natl. Acad. Sci. U.S.A. 80, 6206 (1983)

    Article  ADS  Google Scholar 

  16. F.C. Oberstrass, L.E. Fernandes, P. Lebel, Z. Bryant, Phys. Rev. Lett. 110, 178103 (2013)

    Article  ADS  Google Scholar 

  17. A. Kwon, N.K. Lee, S. Hong, J. Fierling, A. Johner, Biophys. J. 108, 2562 (2015)

    Article  ADS  Google Scholar 

  18. M. Lee, S.H. Kim, S.C. Hong, Proc. Natl. Acad. Sci. U.S.A. 107, 4985 (2010)

    Article  ADS  Google Scholar 

  19. R.R. Sinden, DNA Structure and Function (Elsevier, San Diego, 1994)

  20. C. Jarzynski, Phys. Rev. E 73, 046105 (2006)

    Article  ADS  Google Scholar 

  21. G.E. Crooks, Phys. Rev. E 61, 2361 (2000)

    Article  ADS  Google Scholar 

  22. I. Junier, A. Mossa, M. Manosas, F. Ritort, Phys. Rev. Lett. 102, 070602 (2009)

    Article  ADS  Google Scholar 

  23. A. Alemany, M. Ribezzi-Crivellari, F. Ritort, New J. Phys. 17, 075009 (2015)

    Article  ADS  Google Scholar 

  24. A. Alemany, A. Mossa, I. Junier, F. Ritort, Nat. Phys. 8, 688 (2012)

    Article  Google Scholar 

  25. J. Camunas-Soler, A. Alemany, F. Ritort, Science 355, 412 (2017)

    Article  ADS  Google Scholar 

  26. P. Maragakis, M. Spichty, M. Karplus, J. Phys. Chem. B 112, 6168 (2008)

    Article  Google Scholar 

  27. G. Nam, N.K. Lee, H. Mohrbach, A. Johner, I.M. Kulić, EPL 100, 28001 (2012)

    Article  ADS  Google Scholar 

  28. M.K. Chae, Y. Kim, A. Johner, N.K. Lee, Soft Matter 48, 2346 (2018)

    Article  ADS  Google Scholar 

  29. M.K. Chae, Y. Kim, A. Johner, N.K. Lee, Polymers 12, 192 (2020)

    Article  Google Scholar 

  30. C. Van den Broeck, Physics of Complex Colloids (IOS Press, 2013) pp. 155--193

  31. H. Park, J. Korean Phys. Soc. 72, 1413 (2018)

    Article  ADS  Google Scholar 

  32. U. Seifert, Rep. Prog. Phys. 75, 1 (2012)

    Article  Google Scholar 

  33. J. Horowitz, C. Jarzynski, J. Stat. Mech.: Theor. Exp. 2007, P11002 (2007)

    Article  Google Scholar 

  34. Z. Gong, H.T. Quan, Phys. Rev. E 92, 012131 (2015)

    Article  ADS  Google Scholar 

  35. S. Kullback, R.A. Leibler, Ann. Math. Stat. 22, 79 (1951)

    Article  Google Scholar 

  36. T.M. Cover, J.A. Thomas, Elements of Information Theory (John Wiley & Sons, 2012)

  37. H.H. Hasegawa, J. Ishikawa, K. Takara, D.J. Driebe, Phys. Lett. A 374, 1001 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  38. S. Toyabe, T. Sagawa, M. Ueda, E. Muneyuki, M. Sano, Nat. Phys. 6, 988 (2010)

    Article  Google Scholar 

  39. B. Altaner, J. Phys. A: Math. Theor. 50, 454001 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  40. F. Wang, D.P. Landau, Phys. Rev. Lett. 86, 2050 (2001)

    Article  ADS  Google Scholar 

  41. C. Zhou, T.C. Schulthess, S. Torbrügge, D.P. Landau, Phys. Rev. Lett. 96, 120201 (2006)

    Article  ADS  Google Scholar 

  42. M. Palassini, F. Ritort, Phys. Rev. Lett. 107, 060601 (2011)

    Article  ADS  Google Scholar 

  43. H. Shen, L.J. Tauzin, R. Baiyasi, W. Wang, N. Moringo, B. Shuang, C.F. Landes, Chem. Rev. 117, 7331 (2017)

    Article  Google Scholar 

  44. T.M. Birshtein, V.A. Pryamitsyn, Macromolecules 24, 1554 (1991)

    Article  ADS  Google Scholar 

  45. A.Y. Grosberg, D.V. Kuznetsov, Macromolecules 25, 1970 (1992)

    Article  ADS  Google Scholar 

  46. D. Yang, Q. Wang, ACS Macro Lett. 2, 952 (2013)

    Article  Google Scholar 

  47. C.F. Abrams, N.K. Lee, S. Obukhov, Europhys. Lett. 59, 391 (2002)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nam-Kyung Lee.

Additional information

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chae, MK., Kim, Y., Lee, NK. et al. Free energy measurements by the generalized fluctuation theorems: Theory and numerical study of a model filament. Eur. Phys. J. E 43, 62 (2020). https://doi.org/10.1140/epje/i2020-11984-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2020-11984-5

Keywords

Navigation