Skip to main content
Log in

Influence of fluid flows on electric double layers in evaporating colloidal sessile droplets

  • Regular Article - Flowing Matter
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

A model is developed for describing the transport of charged colloidal particles in an evaporating sessile droplet on the electrified metal substrate in the presence of a solvent flow. The model takes into account the electric charge of colloidal particles and small ions produced by electrolytic dissociation of the active groups on the colloidal particles and solvent molecules. We employ a system of self-consistent Poisson and Nernst–Planck equations for electric potential and average concentrations of colloidal particles and ions with the appropriate boundary conditions. The fluid dynamics, temperature distribution and evaporation process are described with the Navier–Stokes equations, equations of heat conduction and vapor diffusion in air, respectively. The developed model is used to carry out a first-principles numerical simulation of charged silica colloidal particle transport in an evaporating aqueous droplet. We find that electric double layers can be destroyed by a sufficiently strong fluid flow.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. D. Zang, S. Tarafdar, Y.Y. Tarasevich, M.D. Choudhury, T. Dutta, Evaporation of a droplet: From physics to applications. Phys. Rep. 804, 1 (2019)

    Article  MathSciNet  ADS  Google Scholar 

  2. K.S. Kolegov, L.Y. Barash, Applying droplets and films in evaporative lithography. Adv. Coll. Interface. Sci. 285, 102271 (2020)

    Article  Google Scholar 

  3. R.G. Larson, Transport and deposition patterns in drying sessile droplets. AIChE J. 60, 1538 (2014)

    Article  Google Scholar 

  4. W. Han, Z. Lin, Learning from coffee rings: Ordered structures enabled by controlled evaporative self-assembly. Angew. Chem. Int. Ed. 51, 1534 (2012)

    Article  Google Scholar 

  5. M. Parsa, S. Harmand, K. Sefiane, Mechanisms of pattern formation from dried sessile drops. Adv. Coll. Interface. Sci. 254, 22 (2018)

    Article  Google Scholar 

  6. N.D. Patil, R. Bhardwaj, Recent developments on colloidal deposits obtained by evaporation of sessile droplets on a solid surface. J. Indian Inst. Sci. 99, 143 (2019)

    Article  Google Scholar 

  7. J. Wang, L. Wang, Y. Song, L. Jiang, Patterned photonic crystals fabricated by inkjet printing. J. Mater. Chem. C 1, 6048 (2013)

    Article  Google Scholar 

  8. T. Brugarolas, F. Tu, D. Lee, Directed assembly of particles using microfluidic droplets and bubbles. Soft Matter 9, 9046 (2013)

    Article  ADS  Google Scholar 

  9. X. Zhong, A. Crivoi, F. Duan, Sessile nanofluid droplet drying. Adv. Coll. Interface. Sci. 217, 13 (2015)

    Article  Google Scholar 

  10. V. Lotito, T. Zambelli, Approaches to self-assembly of colloidal monolayers: A guide for nanotechnologists. Adv. Coll. Interface. Sci. 246, 217 (2017)

    Article  Google Scholar 

  11. S. Tarafdar, Y. Y. Tarasevich, M. Dutta Choudhury, T. Dutta, D. Zang, Droplet drying patterns on solid substrates: From hydrophilic to superhydrophobic contact to levitating drops, Adv. Condens. Matter Phys. 2018, 5214924 ( 2018)

  12. B.B. Patel, Y. Diao, Multiscale assembly of solution-processed organic electronics: the critical roles of confinement, fluid flow, and interfaces. Nanotechnology 29, 044004 (2018)

    Article  ADS  Google Scholar 

  13. K.S. Kolegov, L.Y. Barash, Joint effect of advection, diffusion, and capillary attraction on the spatial structure of particle depositions from evaporating droplets. Phys. Rev. E 100, 033304 (2019)

    Article  ADS  Google Scholar 

  14. Z. Lin, Evaporative self-assembly of ordered complex structures ( World Scientific, 2012) p. 396

  15. P. Innocenzi, L. Malfatti, P. Falcaro, Water droplets to nanotechnology (Royal Society of Chemistry, 2013) p. 184

  16. R. Bhardwaj, X. Fang, P. Somasundaran, D. Attinger, Self-assembly of colloidal particles from evaporating droplets: Role of dlvo interactions and proposition of a phase diagram. Langmuir 26, 7833 (2010)

    Article  Google Scholar 

  17. V.R. Dugyala, M.G. Basavaraj, Control over coffee-ring formation in evaporating liquid drops containing ellipsoids. Langmuir 30, 8680 (2014)

    Article  Google Scholar 

  18. V.L. Morales, J.-Y. Parlange, M. Wu, F.J. Pérez-Reche, W. Zhang, W. Sang, T.S. Steenhuis, Surfactant-mediated control of colloid pattern assembly and attachment strength in evaporating droplets. Langmuir 29, 1831 (2013)

    Article  Google Scholar 

  19. A. Crivoi, X. Zhong, F. Duan, Crossover from the coffee-ring effect to the uniform deposit caused by irreversible cluster-cluster aggregation. Phys. Rev. E 92, 032302 (2015)

    Article  ADS  Google Scholar 

  20. M. Anyfantakis, Z. Geng, M. Morel, S. Rudiuk, D. Baigl, Modulation of the coffee-ring effect in particle/surfactant mixtures: the importance of particle-interface interactions. Langmuir 31, 4113 (2015)

    Article  Google Scholar 

  21. D.M. Kuncicky, O.D. Velev, Surface-guided templating of particle assemblies inside drying sessile droplets. Langmuir 24, 1371 (2008)

    Article  Google Scholar 

  22. T.A.H. Nguyen, M.A. Hampton, A.V. Nguyen, Evaporation of nanoparticle droplets on smooth hydrophobic surfaces: The inner coffee ring deposits. J. Phys. Chem. C 117, 4707 (2013)

    Article  Google Scholar 

  23. Q. Yan, L. Gao, V. Sharma, Y.-M. Chiang, C.C. Wong, Particle and substrate charge effects on colloidal self-assembly in a sessile drop. Langmuir 24, 11518 (2008)

    Article  Google Scholar 

  24. E. Homede, A. Zigelman, L. Abezgauz, O. Manor, Signatures of van der waals and electrostatic forces in the deposition of nanoparticle assemblies. J. Phys. Chem. Lett. 9, 5226 (2018)

    Article  Google Scholar 

  25. E. Homede, O. Manor, Deposition of nanoparticles from a volatile carrier liquid. J. Colloid Interface Sci. 562, 102 (2020)

    Article  ADS  Google Scholar 

  26. A. Zigelman, O. Manor, The deposition of colloidal particles from a sessile drop of a volatile suspension subject to particle adsorption and coagulation. J. Colloid Interface Sci. 509, 195 (2018)

    Article  ADS  Google Scholar 

  27. C.L. Moraila-Martínez, M.A. Cabrerizo-Vílchez, M.A. Rodríguez-Valverde, The role of the electrostatic double layer interactions in the formation of nanoparticle ring-like deposits at driven receding contact lines. Soft Matter 9, 1664 (2013)

    Article  ADS  Google Scholar 

  28. D. Noguera-Marín, C.L. Moraila-Martínez, M.A. Cabrerizo-Vílchez, M.A. Rodríguez-Valverde, In-plane particle counting at contact lines of evaporating colloidal drops: effect of the particle electric charge. Soft Matter 11, 987 (2015)

    Article  ADS  Google Scholar 

  29. H. Lee, S. Fu, C. Tso, C.Y. Chao, Study of residue patterns of aqueous nanofluid droplets with different particle sizes and concentrations on different substrates. Int. J. Heat Mass Transf. 105, 230 (2017)

    Article  Google Scholar 

  30. N. Bridonneau, M. Zhao, N. Battaglini, G. Mattana, V. Thévenet, V. Noël, M. Roché, S. Zrig, F. Carn, Self-assembly of nanoparticles from evaporating sessile droplets: Fresh look into the role of particle/substrate interaction. Langmuir 36, 11411 (2020)

    Article  Google Scholar 

  31. M. Anyfantakis, D. Baigl, B.P. Binks, Evaporation of drops containing silica nanoparticles of varying hydrophobicities: Exploiting particle-particle interactions for additive-free tunable deposit morphology. Langmuir 33, 5025 (2017)

    Article  Google Scholar 

  32. R. Williams, A.M. Goodman, Wetting of thin layers of sio2 by water. Appl. Phys. Lett. 25, 531 (1974)

    Article  ADS  Google Scholar 

  33. H. Park, J. Lee, T. Kim, Comparison of the Nernst-Planck model and the Poisson-Boltzmann model for electroosmotic flows in microchannels. J. Colloid Interface Sci. 315, 731 (2007)

    Article  ADS  Google Scholar 

  34. M.G. Kurnikova, R.D. Coalson, P. Graf, A. Nitzan, A lattice relaxation algorithm for three-dimensional Poisson-Nernst-Planck theory with application to ion transport through the gramicidin a channel. Biophys. J . 76, 642 (1999)

    Article  Google Scholar 

  35. H. Wang, A. Thiele, L. Pilon, Simulations of cyclic voltammetry for electric double layers in asymmetric electrolytes: A generalized modified Poisson-Nernst-Planck model. J. Phys. Chem. C 117, 18286 (2013)

    Article  Google Scholar 

  36. J.J. López-García, J. Horno, C. Grosse, Ionic size, permittivity, and viscosity-related effects on the electrophoretic mobility: A modified electrokinetic model. Phys. Rev. Fluids 4, 103702 (2019)

    Article  ADS  Google Scholar 

  37. P.B. Warren, Non-faradaic electric currents in the Nernst-Planck equations and nonlocal diffusiophoresis of suspended colloids in crossed salt gradients. Phys. Rev. Lett. 124, 248004 (2020)

    Article  ADS  Google Scholar 

  38. P.B. Warren, S. Shin, H.A. Stone, Diffusiophoresis in ionic surfactants: effect of micelle formation. Soft Matter 15, 278 (2019)

    Article  ADS  Google Scholar 

  39. S. Shin, Diffusiophoretic separation of colloids in microfluidic flows. Phys. Fluids 32, 101302 (2020)

    Article  ADS  Google Scholar 

  40. N. Rivas, S. Frijters, I. Pagonabarraga, J. Harting, Mesoscopic electrohydrodynamic simulations of binary colloidal suspensions. J. Chem. Phys. 148, 144101 (2018)

    Article  ADS  Google Scholar 

  41. H. Hu, R.G. Larson, Analysis of the effects of marangoni stresses on the microflow in an evaporating sessile droplet. Langmuir 21, 3972 (2005)

    Article  Google Scholar 

  42. L.Y. Barash, T.P. Bigioni, V.M. Vinokur, L.N. Shchur, Evaporation and fluid dynamics of a sessile drop of capillary size. Phys. Rev. E 79, 046301 (2009)

    Article  ADS  Google Scholar 

  43. R.D. Deegan, O. Bakajin, T.F. Dupont, G. Huber, S.R. Nagel, T.A. Witten, Capillary flow as the cause of ring stains from dried liquid drops. Nature 389, 827 (1997)

    Article  ADS  Google Scholar 

  44. R.D. Deegan, O. Bakajin, T.F. Dupont, G. Huber, S.R. Nagel, T.A. Witten, Contact line deposits in an evaporating drop. Phys. Rev. E 62, 756 (2000)

    Article  ADS  Google Scholar 

  45. H. Hu, R.G. Larson, Evaporation of a sessile droplet on a substrate. J. Phys. Chem. B 106, 1334 (2002)

    Article  Google Scholar 

  46. L. D. Landau, E. M. Lifshitz, L. P. Pitaevskii, Course of Theoretical Physics VIII: Electrodynamics of continuous media ( Pergamon Press, 1984)

  47. S.R. Maduar, A.V. Belyaev, V. Lobaskin, O.I. Vinogradova, Electrohydrodynamics near hydrophobic surfaces. Phys. Rev. Lett. 114, 118301 (2015)

    Article  ADS  Google Scholar 

  48. T.M. Squires, S.R. Quake, Microfluidics: Fluid physics at the nanoliter scale. Rev. Mod. Phys. 77, 977 (2005)

    Article  ADS  Google Scholar 

  49. M.A. Al-Muzaiqer, K.S. Kolegov, N.A. Ivanova, V.M. Fliagin, Nonuniform heating of a substrate in evaporative lithography. Phys. Fluids 33, 092101 (2021)

    Article  ADS  Google Scholar 

  50. Y.A. Budkov, A.I. Frolov, M.G. Kiselev, N.V. Brilliantov, Surface-induced liquid-gas transition in salt-free solutions of model charged colloids. J. Chem. Phys. 139, 194901 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The work of Y.A.B. and L.Y.B was supported by Grant No. 18-71-10061 from the Russian Science Foundation. The work of Y.A.B. was finished within the Project Teams framework of MIEM HSE.

Author information

Authors and Affiliations

Authors

Contributions

Y.A.B. and L.Y.B. developed the model. S.V.Z. and A.L.K. performed the simulations and the data analysis. All the authors were involved in preparing the manuscript. All the authors have read and approved the final manuscript.

Corresponding author

Correspondence to Lev Yu. Barash.

Appendices

Appendix A: Basic equations in the case of axial symmetry

In this appendix, we will write the basic equations in cylindrical coordinates rz taking into account the axial symmetry.

Equation (1) in (rz) coordinates takes the form

$$\begin{aligned}&- \bigg (\dfrac{\partial \phi }{\partial r} \dfrac{\partial \varepsilon }{\partial r} + \dfrac{\partial \phi }{\partial z} \dfrac{\partial \varepsilon }{\partial z} + \varepsilon \bigg (\dfrac{\partial ^2 \phi }{\partial r^2} + \dfrac{1}{r} \dfrac{\partial \phi }{\partial r} + \dfrac{\partial ^2 \phi }{\partial z^2}\bigg )\bigg )\nonumber \\&\quad = \frac{\rho (r, z, t)}{\varepsilon _{0}}. \end{aligned}$$
(A1)

The Nernst–Planck equation (5) in the (rz) coordinates can be written as follows:

$$\begin{aligned}&\dfrac{\partial n_c}{\partial t} = \dfrac{q_c}{\gamma _c} \bigg (\dfrac{\partial \phi }{\partial r} \dfrac{\partial n_c}{\partial r} + \dfrac{\partial \phi }{\partial z} \dfrac{\partial n_c}{\partial z} + n_c \bigg (\dfrac{\partial ^2 \psi }{\partial r^2} + \dfrac{1}{r} \dfrac{\partial \phi }{\partial r} + \dfrac{\partial ^2 \phi }{\partial z^2}\bigg )\bigg ) \nonumber \\&\quad + \dfrac{\partial n_c}{\partial r} \dfrac{\partial D_c}{\partial r} + \dfrac{\partial n_c}{\partial z} \dfrac{\partial D_c}{\partial z} +D_c \bigg (\dfrac{\partial ^2 n_c}{\partial r^2} + \dfrac{1}{r} \dfrac{\partial n_c}{\partial r} + \dfrac{\partial ^2 n_c}{\partial z^2}\bigg ) \nonumber \\&\quad - \mathbf{v} \cdot \nabla n_c-n_c \nabla \cdot \mathbf{v} . \end{aligned}$$
(A2)

In the same way, we rewrite Eq. (7) for concentrations of ions, \(n_i (r, z, t)\) (\(i=\pm \)),

$$\begin{aligned}&\dfrac{\partial n_i}{\partial t} = \dfrac{q_i}{\gamma _i} \bigg (\dfrac{\partial \phi }{\partial r} \dfrac{\partial n_i}{\partial r} + \dfrac{\partial \phi }{\partial z} \dfrac{\partial n_i}{\partial z}\nonumber \\&\quad + n_i \bigg (\dfrac{\partial ^2 \phi }{\partial r^2} + \dfrac{1}{r} \dfrac{\partial \phi }{\partial r} + \dfrac{\partial ^2 \phi }{\partial z^2}\bigg )\bigg ) + \dfrac{\partial n_i}{\partial r} \dfrac{\partial D_i}{\partial r} + \dfrac{\partial n_i}{\partial z} \dfrac{\partial D_i}{\partial z}\nonumber \\&\quad + D_i \bigg (\dfrac{\partial ^2 n_i}{\partial r^2} + \dfrac{1}{r} \dfrac{\partial n_i}{\partial r} + \dfrac{\partial ^2 n_i}{\partial z^2}\bigg ) - \mathbf{v} \cdot \nabla n_i-n_i \nabla \cdot \mathbf{v} .\nonumber \\ \end{aligned}$$
(A3)

In our simulation, we deal with an incompressible liquid, so that \(\nabla \cdot \mathbf {v}=0\).

The boundary conditions for the electrostatic potential have the following form:

$$\begin{aligned}&\phi _{d}^{(sub)}=\phi _{sub}=\Phi , \end{aligned}$$
(A4)
$$\begin{aligned}&\varepsilon \bigg (r \dfrac{\partial \phi _{d}^{(+)}}{\partial r} + (z+R\cot {\theta }) \dfrac{\partial \phi _{d}^{(+)}}{\partial z}\bigg )\nonumber \\&\quad = r \dfrac{\partial \phi _{d}^{(-)}}{\partial r} + (z+R\cot {\theta }) \dfrac{\partial \phi _{d}^{(-)}}{\partial z}, \end{aligned}$$
(A5)
$$\begin{aligned}&\phi _d^{(-)} = \phi _d^{(+)}, \quad \phi \big | _{|r| \rightarrow \infty } = 0. \end{aligned}$$
(A6)

where R is the radius of the substrate and \(\theta \) is the contact angle. The boundary conditions for the concentrations take the following form:

$$\begin{aligned}&r \dfrac{\partial n_{c,\pm }}{\partial r} + (z+R\cot {\theta }) \dfrac{\partial n_{c,\pm }}{\partial z} \nonumber \\&\quad +\dfrac{q_{c,\pm }n_{c,\pm }}{k_{B} T} \bigg (r \dfrac{\partial \phi _{d}^{(+)}}{\partial r} + (z+R\cot {\theta }) \dfrac{\partial \phi _{d}^{(+)}}{\partial z}\bigg ) = 0,\nonumber \\ \end{aligned}$$
(A7)
$$\begin{aligned}&\dfrac{\partial n_{c,\pm }}{\partial z} + \dfrac{q_{c,\pm }n_{c,\pm }}{k_{B} T} \dfrac{\partial \phi _{d}^{(sub)}}{\partial z} = 0. \end{aligned}$$
(A8)

Appendix B: Temperature distribution inside the droplet

The field of temperature, \(T(\mathbf {r},t)\), inside the droplet can be obtained from the numerical solution of the heat transfer equation taking into account the liquid motion

$$\begin{aligned} \dfrac{\partial T}{\partial t} + \mathbf{v} \cdot \nabla T = \kappa \Delta T, \end{aligned}$$
(B1)

where \(\kappa \) is the thermal diffusivity of the liquid. The boundary conditions for this equation have the following form: \(\partial T / \partial r = 0\) at \(r = 0\); \(T = T_0\) at \(z = 0\); \(\partial T / \partial {\mathbf {n}} = -Q_0(r)/k\) at the droplet free boundary, where k is the thermal conductivity of the liquid; \(Q_0(r) = LJ_s(r)\) is the heat flow with the specific heat of vaporization, L, and the vaporization flux density, \(J_s(r)\), which can be calculated by the following interpolation formula [44]

$$\begin{aligned} J_s (r) = J_0(\theta ) (1-r^2/R^2)^{-(1/2-\theta /\pi )}, \end{aligned}$$
(B2)

where \(J_0 (\theta )\) can be determined by the following expressions [45]:

$$\begin{aligned}&J_0 (\theta ) / (1-\Lambda (\theta )) = J_0(\pi /2) (0.27 \theta ^2 + 1.3), \end{aligned}$$
(B3)
$$\begin{aligned}&\Lambda (\theta ) = 0.2239(\theta -\pi /4)^2+0.3619, \end{aligned}$$
(B4)
$$\begin{aligned}&J_0(\pi /2) = D u_s/R. \end{aligned}$$
(B5)

We note that in our case, it is not necessary to solve the heat transfer equation inside the substrate, because we assume that the substrate connects with a thermostat, fixing its temperature \(T_0\).

Note that the droplet surface of the spherical segment shape can be parameterized by the following equations:

$$\begin{aligned}&h(r,t)=\frac{R(\cos \varphi (r,t)-\cos \theta (t))}{\sin \theta (t)}; \nonumber \\&\varphi (r,t)=\arcsin \left( \frac{r\sin \theta (t)}{R}\right) , \end{aligned}$$
(B6)

where \(\varphi \) is the angle between the normal vector and the vertical axis z.

Appendix C: Velocity distribution inside the droplet for the Marangoni flux case

In the axial symmetry case, the Navier–Stokes equations can be rewritten in terms of vorticity, \(\gamma (r,z)={\partial u_r}/{\partial z}-{\partial u_z}/{\partial r}\), and stream function, \(\psi \), as follows: [42]:

$$\begin{aligned}&\frac{\partial }{\partial t}\gamma (r,z)+(\mathbf {v}\cdot \pmb {\nabla })\gamma (r,z) \!=\! \nu \left( \Delta \gamma (r,z)-\frac{\gamma (r,z)}{r^2}\right) ,\qquad \end{aligned}$$
(C1)
$$\begin{aligned}&\frac{\partial ^2\psi }{\partial r^2}-\frac{1}{r}\frac{\partial \psi }{\partial r}+ \frac{\partial ^2\psi }{\partial z^2} = r\gamma , \end{aligned}$$
(C2)

where the stream function is related to the velocity components via the following relations \({\partial \psi }/{\partial z}=ru_r\), \({\partial \psi }/{\partial r}=-ru_z\).

The boundary conditions: \(\gamma =0\) at \(r=0\), \(\gamma =\partial u_r/\partial z\) at \(z=0\); \(\gamma =\eta ^{-1}{d\sigma }/ds+2u_\tau d\varphi /ds\) at the droplet boundary; \(\psi =0\) at all the boundaries: droplet boundary, axis of symmetry (\(r=0\)) and substrate-fluid interface (\(z=0\)). Here, \({d\sigma }/{ds}=\sigma ^{\prime }\partial T/\partial s\) is the derivative of the surface tension with respect to the arc length along the droplet surface, where the distribution of temperature discussed above is taken into account; \(\sigma ^{\prime }=\partial \sigma /\partial T\) is derivative of surface tension with respect to the temperature. Variable \(\varphi \) is the angle between the normal vector and the vertical axis z, so that \(\partial T/\partial s = \cos \varphi \cdot \partial T/\partial r - \sin \varphi \cdot \partial T/\partial z\), and the tangent component of velocity is \(u_\tau = u_r \cos \varphi -u_z \sin \varphi \). For the spherical shape of the droplet, described by equations (B6), the arc length s is described by \(\varphi \) via the relation \(s = R\varphi / \sin \theta \). In particular, at the contact line \(s_{max} = R\theta / \sin \theta \).

Appendix D: Boundary conditions for Navier–Stokes equations for the capillary fluid flow case

The boundary conditions for Navier–Stokes equations discussed in Appendix C were derived with the assumption that \(u_n = 0\). That is why the capillary flow was not taken into account in this derivation. In order to take into account the capillary fluid flow, it is necessary to rewrite the boundary conditions in a more general form. For the vorticity at the droplet boundary, we have

$$\begin{aligned} \gamma = \frac{1}{\eta }\frac{d\sigma }{ds} + 2u_\tau \frac{d\varphi }{ds}-2\frac{\partial u_n}{\partial s}, \end{aligned}$$
(D1)

where \(u_n = u_r \sin \varphi + u_z \cos \varphi = -\partial \psi / (r\partial s)\). For the stream function \(\psi =0\) at the axis of the droplet symmetry and the droplet-substrate interface. However, at the droplet boundary, we have

$$\begin{aligned} \psi = \int _0^s (-r u_n) ds. \end{aligned}$$
(D2)

As it follows from the mass conservation law in an infinitely small cylindrical volume near the droplet surface, on the droplet surface, the following relation

$$\begin{aligned} u_n - \frac{\partial h(r,t)}{\partial t}\cos \varphi = \frac{J_s(r,t)}{n} \end{aligned}$$
(D3)

is fulfilled, where n is the liquid density.

Note that \(m = n\pi h_0^2 (R-h_0/3)\), where \(h_0 = R(1-\cos \theta )/\sin \theta \), i.e., \(m = \frac{1}{3}\pi R^3n (3-\tan (\theta /2))\tan ^2(\theta /2)\). Therefore,

$$\begin{aligned} \frac{dm}{dt} = -\frac{1}{2}n\pi R^3 \frac{\tan \frac{\theta }{2}-2}{\cos ^2\frac{\theta }{2}}\tan \frac{\theta }{2}\cdot \frac{d\theta }{dt}. \end{aligned}$$
(D4)

Thus, using the relation

$$\begin{aligned} \frac{dm}{dt}=-\int _0^{s_{max}} 2\pi r(s) J(r(s)) ds, \end{aligned}$$
(D5)

one can calculate \(d\theta /dt\). Further, using equations (B6), we get

$$\begin{aligned} \frac{\partial h(r,t)}{\partial t} = \frac{R }{\sin ^2\theta }\left( 1-\frac{\cos \theta }{\cos \varphi }\right) \frac{d\theta }{dt}. \end{aligned}$$
(D6)

Knowing \(\partial h(r,t)/\partial t\), we obtain \(u_n\) on the droplet boundary using Eq. (D3). Knowing \(u_n\), we can use boundary conditions (D1) and (D2).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zavarzin, S.V., Kolesnikov, A.L., Budkov, Y.A. et al. Influence of fluid flows on electric double layers in evaporating colloidal sessile droplets. Eur. Phys. J. E 45, 24 (2022). https://doi.org/10.1140/epje/s10189-022-00178-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/s10189-022-00178-2

Navigation