Skip to main content

Advertisement

Log in

The status of the macromolecular crystallography beamlines at the European Synchrotron Radiation Facility

  • Review
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The European Synchrotron Radiation Facility (ESRF) is the oldest and most powerful 3rd generation synchrotron in Europe, providing X-rays to more than 40 experimental stations welcoming several thousand researchers per year. A major success story has been the ESRF's facilities for macromolecular crystallography (MX). These are grouped around 3 straight sections: On ID23 canted undulators accommodate ID23-1, a mini-focus tuneable energy end station and ID23-2, the world's first micro-focus beamline dedicated to MX; ID29 houses a single, mini-focus, tuneable energy end station; ID30 will provide three end stations for MX due in operation from mid-2014 to early 2015. Here, one branch of a canted X-ray source feeds two fixed-energy end stations (MASSIF-1, MASSIF-3). The second feeds ID30B, a variable focus, tuneable energy beamline. MASSIF-1 is optimised for automatic high-throughput experiments requiring a relatively large beam size at the sample position, MASSIF-3 is a high-intensity, micro-focus facility designed to complement ID23-2. All end stations are highly automated, equipped with sample mounting robots and large area, fast-readout photon-counting detectors. Experiment control and tracking is achieved via a combination of the MXCuBE2 graphical user interface and the ISPyB database, the former allowing user-friendly control of all beamline components, the latter providing data tracking before, after and during experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Lescar et al., ESRF Newsletter 28, 12 (1997).

    Google Scholar 

  2. H. Belrhali et al., ESRF Newsletter 28, 15 (1997).

    Google Scholar 

  3. V. Biou et al., ESRF Newsletter 28, 21 (1997).

    Google Scholar 

  4. E. Pebay-Peyroula et al., Science 277, 1676 (1997).

    Article  Google Scholar 

  5. K. Luger et al., Nature 389, 251 (1997).

    Article  ADS  Google Scholar 

  6. H. Hope, Acta Crystallogr. B-Struct. Sci. 44, 22 (1988) DOI:10.1107/S0108768187008632.

    Article  Google Scholar 

  7. W.A. Hendrickson, C.M. Ogata, Macromol. Crystallogr. A 276, 494 (1997) DOI:10.1016/S0076-6879(97)76074-9.

    Article  Google Scholar 

  8. J.L. Smith, Curr. Opin. Struct. Biol. 1, 1002 (1991) DOI:10.1016/0959-440X(91)90098-E.

    Article  Google Scholar 

  9. S. Wakatsuki et al., J. Synchrotron Radiat. 5, 215 (1998) DOI:10.1107/S0909049597018785.

    Article  Google Scholar 

  10. D. de Sanctis et al., J. Synchrotron Radiat. 19, 455 (2012) DOI:10.1107/S0909049512009715.

    Article  Google Scholar 

  11. D. Nurizzo et al., J. Synchrotron Radiat. 13, 227 (2006) DOI:10.1107/S0909049506004341.

    Article  Google Scholar 

  12. D. Flot et al., J. Synchrotron Radiat. 17, 107 (2010) DOI:10.1107/S0909049509041168.

    Article  Google Scholar 

  13. A. Perrakis et al., Acta Crystallogr. Sect. D-Biol. Crystallogr. 55, 1765 (1999) DOI:10.1107/S0907444999009348.

    Article  Google Scholar 

  14. P. Theveneau et al., J. Phys.: Conf. Ser. 425, (2013) DOI:10.1088/1742-6596/425/1/012001.

  15. P. Pernot et al., J. Synchrotron Radiat. 20, 660 (2013) DOI:10.1107/S0909049513010431.

    Article  Google Scholar 

  16. A. Round et al., Acta Crystallogr. D-Biol. Crystallogr. 71, 67 (2015) DOI:10.1107/S1399004714026959.

    Article  Google Scholar 

  17. A. Round et al., Acta Crystallogr. D-Biol. Crystallogr. 69, 2072 (2013) DOI:10.1107/S0907444913019276.

    Article  Google Scholar 

  18. A. De Maria Antolinos et al., Acta Crystallogr. D-Biol. Crystallogr. 71, 76 (2015) DOI:10.1107/S1399004714019609.

    Article  Google Scholar 

  19. D. von Stetten et al., Acta Crystallogr. D-Biol. Crystallogr. 71, 15 (2015) DOI:10.1107/S139900471401517X.

    Article  Google Scholar 

  20. S. Malbet-Monaco et al., Acta Crystallogr. D-Biol. Crystallogr. 69, 1289 (2013) DOI:10.1107/S0907444913001108.

    Article  Google Scholar 

  21. H.M. Berman et al., Nucl. Acids Res. 28, 235 (2000) DOI:10.1093/Nar/28.1.235.

    Article  ADS  Google Scholar 

  22. E. Micossi, W.N. Hunter, G.A. Leonard, Acta Crystallogr. D-Biol. Crystallogr. 58, 21 (2002) DOI:10.1107/S0907444901016808.

    Article  Google Scholar 

  23. F. Cipriani et al., Acta Crystallogr. D-Biol. Crystallogr. 62, 1251 (2006) DOI:10.1107/S0907444906030587.

    Article  Google Scholar 

  24. T. Giraud et al., J. Appl. Crystallogr. 42, 125 (2009) DOI:10.1107/S0021889808040958.

    Article  Google Scholar 

  25. G.A. Leonard et al., J. Appl. Crystallogr. 42, 333 (2009) DOI:10.1107/S0021889809001721.

    Article  Google Scholar 

  26. J. Gabadinho et al., J. Synchrotron Radiat. 17, 700 (2010) DOI:10.1107/S0909049510020005.

    Article  Google Scholar 

  27. D. de Sanctis, G. Leonard, in Notiziario Neutroni e Luce di Sincrotrone Vol. 19 (Consiglio Nazionale delle Ricerche, 2014) p. 24.

  28. S. Delageniere et al., Bioinformatics 27, 3186 (2011) DOI:10.1093/bioinformatics/btr535.

    Article  Google Scholar 

  29. M.W. Bowler et al., Acta Crystallogr. D-Biol. Crystallogr. 66, 855 (2010) DOI:10.1107/S0907444910019591.

    Article  Google Scholar 

  30. G.P. Bourenkov, A.N. Popov, Acta Crystallogr. D-Biol. Crystallogr. 66, 409 (2010) DOI:10.1107/S0907444909054961.

    Article  Google Scholar 

  31. J. Sanchez-Weatherby et al., Acta Crystallogr. D-Biol. Crystallogr. 65, 1237 (2009) DOI:10.1107/S0907444909037822.

    Article  Google Scholar 

  32. S. Brockhauser et al., Acta Crystallogr. D-Biol. Crystallogr. 69, 1241 (2013) DOI:10.1107/S0907444913003880.

    Article  Google Scholar 

  33. S. Brockhauser et al., Acta Crystallogr. D-Biol. Crystallogr. 68, 975 (2012) DOI:10.1107/S090744491201863x.

    Article  Google Scholar 

  34. M.W. Bowler et al., Cryst. Growth Des. 15, 1043 (2015) DOI:10.1021/cg500890r.

    Article  Google Scholar 

  35. S. Russi et al., J. Struct. Biol. 175, 236 (2011) DOI:10.1016/j.jsb.2011.03.002.

    Article  Google Scholar 

  36. S. Monaco et al., J. Appl. Crystallogr. 46, 804 (2013) DOI:10.1107/S0021889813006195.

    Article  Google Scholar 

  37. W. Kabsch, Acta Crystallogr. D-Biol. Crystallogr. 66, 125 (2010) DOI:10.1107/S0907444909047337.

    Article  Google Scholar 

  38. T.G. Battye et al., Acta Crystallogr. D-Biol. Crystallogr. 67, 271 (2011) DOI:10.1107/S0907444910048675.

    Article  Google Scholar 

  39. M.D. Winn et al., Acta Crystallogr. D-Biol. Crystallogr. 67, 235 (2011) DOI:10.1107/S0907444910045749.

    Article  Google Scholar 

  40. P.D. Adams et al., Acta Crystallogr. D-Biol. Crystallogr. 66, 213 (2010) DOI:10.1107/S0907444909052925.

    Article  Google Scholar 

  41. G.M. Sheldrick, Acta Crystallogr. A 64, 112 (2008) DOI:10.1107/S0108767307043930.

    Article  ADS  Google Scholar 

  42. P. van der Linden et al., J. Appl. Crystallogr. 47, 584 (2014) DOI:10.1107/S1600576714000855.

    Article  Google Scholar 

  43. A.A. McCarthy et al., J. Synchrotron Radiat. 16, 803 (2009) DOI:10.1107/S0909049509035377.

    Article  Google Scholar 

  44. C. Gati et al., IUCrJ 1, 87 (2014) DOI:10.1107/S2052252513033939.

    Article  Google Scholar 

  45. F. Stellato et al., IUCrJ 1, 204 (2014) DOI:10.1107/S2052252514010070.

    Article  Google Scholar 

  46. C. Broennimann et al., J. Synchrotron Radiat. 13, 120 (2006) DOI:10.1107/S0909049505038665.

    Article  Google Scholar 

  47. G. Hulsen et al., J. Appl. Crystallogr. 39, 550 (2006) DOI:10.1107/S0021889806016591.

    Article  Google Scholar 

  48. R. Giordano et al., Acta Crystallogr. D-Biol. Crystallogr. 68, 649 (2012) DOI:10.1107/S0907444912006841.

    Article  Google Scholar 

  49. J.L. Ferrer et al., Expert Opin. Drug Discov. 8, 835 (2013) DOI:10.1517/17460441.2013.793666.

    Article  Google Scholar 

  50. M.G. Bowler, M.W. Bowler, Acta Crystallogr. F 70, 127 (2014) DOI:10.1107/S2053230X13032007.

    Article  Google Scholar 

  51. G.A. Leonard et al., Acta Crystallogr. D-Biol. Crystallogr. 61, 388 (2005) DOI:10.1107/S0907444905000429.

    Article  Google Scholar 

  52. R.B.G. Ravelli et al., J. Synchrotron Radiat. 12, 276 (2005) DOI:10.1107/S0909049505003286.

    Article  Google Scholar 

  53. D. de Sanctis, M.H. Nanao, Acta Crystallogr. D-Biol. Crystallogr. 68, 1152 (2012) DOI:10.1107/S0907444912023475.

    Article  Google Scholar 

  54. J. Harms et al., Cell 107, 679 (2001) DOI:10.1016/S0092-8674(01)00546-3.

    Article  Google Scholar 

  55. B.T. Wimberly et al., Nature 407, 327 (2000).

    Article  ADS  Google Scholar 

  56. S.G.F. Rasmussen et al., Nature 450, 383 (2007) DOI:10.1038/Nature06325.

    Article  ADS  Google Scholar 

  57. T. Warne et al., Nature 454, 486 (2008) DOI:10.1038/Nature07101.

    Article  ADS  Google Scholar 

  58. R. Baradaran et al., Nature 494, 443 (2013) DOI:10.1038/Nature11871.

    Article  ADS  Google Scholar 

  59. A. Amunts et al., J. Biol. Chem. 285, 3478 (2010) DOI:10.1074/jbc.M109.072645.

    Article  Google Scholar 

  60. J.E. Burke et al., Science 344, 1035 (2014) DOI:10.1126/science.1253397.

    Article  ADS  Google Scholar 

  61. J. Fritsch et al., Nature 479, 249 (2011) DOI:10.1038/Nature10505.

    Article  ADS  Google Scholar 

  62. M. Elias et al., Nature 491, 134 (2012) DOI:10.1038/Nature11517.

    Article  ADS  Google Scholar 

  63. U.K. Eriksson et al., Science 340, 1346 (2013) DOI:10.1126/science.1234306.

    Article  ADS  Google Scholar 

  64. A.P. Carter et al., Nature 407, 340 (2000).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gordon A. Leonard.

Additional information

Contribution to the Focus Point on “Status of third-generation synchrotron crystallography beamlines: An overview” edited by Gaston Garcia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mueller-Dieckmann, C., Bowler, M.W., Carpentier, P. et al. The status of the macromolecular crystallography beamlines at the European Synchrotron Radiation Facility. Eur. Phys. J. Plus 130, 70 (2015). https://doi.org/10.1140/epjp/i2015-15070-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2015-15070-0

Keywords

Navigation