Skip to main content
Log in

Rod-like cyanophenyl probe molecules nanoconfined to oxide particles: Density of adsorbed surface species

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

Surface layers have already been observed by broadband dielectric spectroscopy for composite systems formed by adsorption of rod-like cyanophenyl derivates as probe molecules on the surface of oxide particles. In this work, features of the surface layer are reported; samples with different amounts of the probe molecules adsorbed onto oxide (nano) particles were prepared in order to study their interactions with the surface. Thermogravimetric analysis (TGA) was applied to analyze the amount of loaded probe molecules. The density of the surface species \( n_{s}\) was introduced and its values were estimated from quantitative Fourier transform infrared spectroscopy (FTIR) coupled with TGA. This parameter allows discriminating the composites into several groups assuming a similar interaction of the probe molecules with the hosts of a given group. An influence factor H is further proposed as the ratio of the number of molecules in the surface layer showing a glassy dynamics and the number of molecules adsorbed tightly on the surface of the support: It was found for aerosil composites and used for calculating the maximum filling degree of partially filled silica MCM-41 composites showing only one dielectric process characteristic for glass-forming liquids and a bulk behavior for higher filling degrees.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R. Zorn, B. Frick, H. Büttner H., J. Phys. IV, 10 (2000)

    Google Scholar 

  2. B. Frick, M. Koza, R. Zorn, Eur. Phys. J. E 12, 3 (2003)

    Article  Google Scholar 

  3. M. Koza, B. Frick, R. Zorn, Eur. Phys. J. ST 141, 1 (2007)

    Article  Google Scholar 

  4. P. Huber, J. Phys.: Condens. Matter 27, 103102 (2015)

    ADS  Google Scholar 

  5. L. Frunza, H. Kosslick, S. Frunza, A. Schönhals, Micropor. Mesopor. Mater. 90, 259 (2006)

    Article  Google Scholar 

  6. A.R. Brás, S. Frunza, L. Guerreiro, I.M. Fonseca, A. Corma, L. Frunza, M. Dionísio, A. Schönhals, J. Chem. Phys. 132, 224508 (2010)

    Article  ADS  Google Scholar 

  7. M. Füllbrandt, P.J. Purohit, A. Schönhals, Macromolecules 46, 4626 (2013)

    Article  Google Scholar 

  8. C.E.D. Chidsey, D.N. Loiacono, Langmuir 6, 682 (1990)

    Article  Google Scholar 

  9. F.M. Aliev, M.N. Breganov, Sov. Phys. JETP Lett. 47, 117 (1988)

    ADS  Google Scholar 

  10. G.P. Crawford, S. Zumer, Liquid Crystals in Complex Geometries Formed by Polymer and Porous Networks (CRC Press, Taylor & Francis Group, London, UK, 1996)

  11. A.V. Kityk, M. Wolff, K. Knorr, D. Morineau, R. Lefort, P. Huber, Phys. Rev. Lett. 101, 187801 (2008)

    Article  ADS  Google Scholar 

  12. X. Zhang, X. Liu, X. Zhang, Y. Tian, Y. Meng, Liq. Cryst. 39, 1305 (2012)

    Article  Google Scholar 

  13. S. Calus, L. Borowik, A.V. Kityk, M. Eich, M. Busch, P. Huber, Phys. Chem. Chem. Phys. 17, 22115 (2015)

    Article  Google Scholar 

  14. A. Huwe, F. Kremer, J. Kärger, P. Behrens, W. Schwieger, G. Ihlein, Ö. Weiß, F. Schuth, J. Mol. Liq. 86, 173 (2000)

    Article  Google Scholar 

  15. A.R. Bras, I.M. Fonseca, M. Dionisio, A. Schönhals, F. Affouard, N.T. Correia, J. Phys. Chem. C 118, 13857 (2014)

    Article  Google Scholar 

  16. J. Leys, C. Glorieux, J. Thoen, J. Non-Cryst. Solids 353, 4560 (2007)

    Article  ADS  Google Scholar 

  17. C.V. Cerclier, M. Ndao, R. Busselez, R. Lefort, E. Grelet, P. Huber, A.V. Kityk, L. Noirez, A. Schönhals, D. Morineau, J. Phys. Chem. C 116, 18990 (2012)

    Article  Google Scholar 

  18. B. Frick, C. Alba-Simionesco, G. Dosseh, C. Le Quellec, A.J. Moreno, J. Colmenero, A. Schönhals, R. Zorn, K. Chrissopoulou, S.H. Anastasiadis, K. Dalnoki-Veress, J. Non-Cryst. Solids 351, 2657 (2005)

    Article  ADS  Google Scholar 

  19. D. Morineau, C. Alba-Simionesco, J. Phys. Chem. Lett. 1, 1155 (2010)

    Article  Google Scholar 

  20. J. Martín, J. Maiz, J. Sacristan, C. Mijangos, Polymer 53, 1149 (2012)

    Article  Google Scholar 

  21. M. Krutyeva, A. Wischnewski, M. Monkenbusch, L. Willner, J. Maiz, C. Mijangos, A. Arbe, J. Colmenero, A. Radulescu, O. Holderer, M. Ohl, D. Richter, Phys. Rev. Lett. 110, 108303 (2013) 110

    Article  ADS  Google Scholar 

  22. P. Kumar, S.V. Buldyrev, F.W. Starr, N. Giovambattista, H.E. Stanley, Phys. Rev. E 72, 051503 (2005)

    Article  ADS  Google Scholar 

  23. H. Belarbi, A. Haouzi, J.C. Giuntini, S. Devautour-Vinot, M. Kharroubi, F. Henn, J. Non-Cryst. Solids 356, 664 (2010)

    Article  ADS  Google Scholar 

  24. S. Smirnov, V. Vlassiouk, P. Takmakov, F. Rios, ACS Nano. 4, 5069 (2010)

    Article  Google Scholar 

  25. Y. Ryabov, A. Gutina, Y. Feldman, S. Frunza, L. Frunza, A. Schönhals, A. J. Chem. Phys. 133, 037101 (2010)

    Article  ADS  Google Scholar 

  26. X. Zhuang, P.B. Miranda, D. Kim, Y.R. Shen, Phys. Rev. B 59, 12632 (1999)

    Article  ADS  Google Scholar 

  27. G. Cordoyiannis, A. Zidansek, G. Lahajnar, Z. Kutnjak, H. Amenitsch, G. Nounesis, S. Kralj, Phys. Rev. E 79, 051703 (2009)

    Article  ADS  Google Scholar 

  28. K.H. Liu, Y. Zhang, J.J. Lee, C.C. Chen, Y.Q. Yeh, S.H. Chen, C.Y. Mou, J. Chem. Phys. 139, 064502 (2013)

    Article  ADS  Google Scholar 

  29. B.H. Clare, K. Efimenko, D.A. Fischer, J. Genzer, N.L. Abbott, Chem. Mater. 18, 2357 (2006)

    Article  Google Scholar 

  30. A.K. Soper, J. Phys.: Condens. Matter 24, 064107 (2012)

    ADS  Google Scholar 

  31. S. Frunza, L. Frunza, A. Schönhals, H.L. Zubowa, H. Kosslick, H.E. Carius, R. Fricke, Chem. Phys. Lett. 307, 167 (1999)

    Article  ADS  Google Scholar 

  32. S. Frunza, L. Frunza, A. Schönhals, J. Phys. IV, 10 (2000)

    Google Scholar 

  33. S. Frunza, L. Frunza, H. Goering, H. Sturm, A. Schönhals, Europhys. Lett. 56, 801 (2001)

    Article  ADS  Google Scholar 

  34. S. Frunza, L. Frunza, M. Tintaru, I. Enache, T. Beica, A. Schönhals, Liq. Cryst. 31, 913 (2004)

    Article  Google Scholar 

  35. J. Leys, C. Glorieux, J. Thoen, J. Phys.: Condens. Matter 20, 244111 (2008)

    ADS  Google Scholar 

  36. N.I. Ionescu, M. Chirca, E. Meroiu, J. Herscovici, React. Kinet. Catal. Lett. 15, 425 (1980)

    Article  Google Scholar 

  37. L. Frunza, H. Kosslick, U. Bentrup, I. Pitsch, R. Fricke, S. Frunza, A. Schönhals, J. Molec. Struct. 651-653, 341 (2003)

    Article  ADS  Google Scholar 

  38. G.S. Iannacchione, C.W. Garland, J.T. Mang, T.P. Rieker, Phys. Rev. E 58, 5966 (1998)

    Article  ADS  Google Scholar 

  39. E. Ilyes, M. Florea, A.M. Madalan, M. Haiduc, V.I. Parvulescu, M.A. Andruh, Inorg. Chem. 51, 7954 (2012)

    Article  Google Scholar 

  40. A. Moragues, F. Neaţu, V.I. Parvulescu, M. Dolores Marcos, P. Amorós, V. Michelet, ACS Catal. 5, 5060 (2015)

    Article  Google Scholar 

  41. S. Frunza, H. Kosslick, A. Schönhals, L. Frunza, I. Enache, T. Beica, J. Non-Cryst. Solids 325, 103 (2003)

    Article  ADS  Google Scholar 

  42. A. Hourri, T. Bose, J. Thoen, Phys. Rev. E 63, 051702 (2001)

    Article  ADS  Google Scholar 

  43. L. Frunza, S. Frunza, M. Poterasu, T. Beica, H. Kosslick, D. Stoenescu, Spectrochim. Acta Part A 72, 248 (2009)

    Article  ADS  Google Scholar 

  44. G.A. Puchkovskaya, A.Yu. Reznikov, A.A. Yakubov, O.V. Yaroshchuk, A.V. Glushchenko, J. Mol. Struct. 381, 133 (1996)

    Article  ADS  Google Scholar 

  45. Y.W. Zhou, M. Jaroniec, R.K. Gilpin, Anal. Chem. 66, 4100 (1994)

    Article  Google Scholar 

  46. Y.W. Zhou, M. Jaroniec, G.L. Hann, R.K. Gilpin, Anal. Chem. 66, 1454 (1994)

    Article  Google Scholar 

  47. S. Frunza, A. Schönhals, L. Frunza, T. Beica, I. Zgura, P. Ganea, D. Stoenescu, Chem. Phys. 372, 51 (2010)

    Article  ADS  Google Scholar 

  48. A. Bak, K. Chedowska, Phys. Rev. E 83, 061708 (2011)

    Article  ADS  Google Scholar 

  49. L. Velarde, H.F. Wang, Chem. Phys. Lett. 585, 42 (2013)

    Article  ADS  Google Scholar 

  50. A. Huwe, F. Kremer, J. Kärger, P. Behrens, W. Schwieger, G. Ihlein, Ö. Weiß, F. Schüth, J. Mol. Liq. 86, 173 (2000)

    Article  Google Scholar 

  51. F. Laeri, F. Schüth, U. Simon, M. Wark, Host-Guest Systems Based on Nanoporous Crystals (Wiley-VCH, Weinheim, 2003)

  52. A.V. Kityk, M. Wolff, K. Knorr, D. Morineau, R. Lefort, P. Huber, Phys. Rev. Lett. 101, 187801 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ligia Frunza.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frunza, S., Frunza, L., Ganea, C. et al. Rod-like cyanophenyl probe molecules nanoconfined to oxide particles: Density of adsorbed surface species. Eur. Phys. J. Plus 131, 27 (2016). https://doi.org/10.1140/epjp/i2016-16027-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2016-16027-5

Keywords

Navigation