Skip to main content
Log in

Ultrahigh sensitive gas sensors based on slotted photonic wire-based structures including optical microcavities

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this paper, we investigated two-dimensional (2D) and three-dimensional (3D) finite element method (FEM) simulations to provide ultrasensitive gas sensors based on silicon-on-insulator (SOI) slotted photonic wire structures in the mid-IR spectral region, tuned for the wavelength 3.392 \(\upmu \hbox {m}\). The proposed optical microstructures have the ability to detect methane gas in the environment in addition to sensing the gas flux from the hole/slot regions with a very high sensitivity (\({S} = 2.97\)) through a very high confinement of the electric field in the photonic wire slot region that leads to an increase in the interaction of light with gas. To further boost the sensitivity of the SOI slotted photonic wire structure to the methane gas, we designed an optical microcavity in the photonic crystal (PhC) slotted structure. This microcavity can sense the smallest methane gas level \((0.36062\,\upmu \hbox {m}^{2})\) with high sensitivity (\({S}= 27.45\)), by means of strengthening the high-quality factor cavity mode and reduction of effective modal volumes. In addition, the ultra-wide bandgap (\(1.9\,\upmu \hbox {m}\)) obtained from Bragg mirrors of the simulated microcavity structures can facilitate us to extend the sensing in a wide range of wavelengths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. S. Ghosh, T. Dar, C. Viphavakit, C. Pan, N. Kejalakshmy, B. Rahman, Compact photonic SOI sensors, in Computational Photonic Sensors, ed. by M. Hameed, S. Obayya (Springer, Cham, 2019), pp. 343–383

    Chapter  Google Scholar 

  2. K. Yamada, Silicon photonic wire waveguides: fundamentals and applications, in Silicon Photonics II. Topics in Applied Physics, vol. 119, ed. by D. Lockwood, L. Pavesi (Springer, Berlin, 2011), pp. 1–29

    Chapter  Google Scholar 

  3. M. La Notte, B. Troia, T. Muciaccia, C. Campanella, F. De Leonardis, V. Passaro, Recent advances in gas and chemical detection by Vernier effect-based photonic sensors. Sensors 14(3), 4831–4855 (2014)

    Article  Google Scholar 

  4. M. Butt, S. Degtyarev, S. Khonina, N. Kazanskiy, An evanescent field absorption gas sensor at mid-IR 3.39 \(\mu \text{ m }\) wavelength. J. Modern Opt. 64(18), 1892–1897 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  5. J.G. Wangüemert-Pérez, A. Hadij-ElHouati, A. Sánchez-Postigo, J. Leuermann, D.-X. Xu, P. Cheben, A. Ortega-Moñux, R. Halir, Í. Molina-Fernández, Subwavelength structures for silicon photonics biosensing. Opt. Laser Technol. 109, 437–448 (2019)

    Article  ADS  Google Scholar 

  6. C.-S. Deng, M.-J. Li, J. Peng, W.-L. Liu, J.-X.B. Zhong, Simultaneously high-Q and high-sensitivity slotted photonic crystal nanofiber cavity for complex refractive index sensing. JOSA B 34(8), 1624–1631 (2017)

    Article  ADS  Google Scholar 

  7. H.K. Hisham, Fiber Bragg Grating, Sensors: Development and Applications: Development and Applications (Taylor & Francis Group, Routledge, 2019)

    Google Scholar 

  8. C. Consani, C. Ranacher, A. Tortschanoff, T. Grille, P. Irsigler, B. Jakoby, Mid-infrared photonic gas sensing using a silicon waveguide and an integrated emitter. Sens. Actuators B Chem. 274, 60–65 (2018)

    Article  Google Scholar 

  9. M. Butt, S. Khonina, N. Kazanskiy, Plasmonic refractive index sensor based on metal-insulator-metal waveguides with high sensitivity. J. Modern Opt. 66(9), 1038–1043 (2019)

    Article  ADS  Google Scholar 

  10. Y. Halioua, A. Bazin, P. Monnier, T. Karle, G. Roelkens, I. Sagnes, R. Raj, F. Raineri, Hybrid III–V semiconductor/silicon nanolaser. Opt. Express 19(10), 9221–9231 (2011)

    Article  ADS  Google Scholar 

  11. M.F.O. Hameed, A.S. Saadeldin, E.M. Elkaramany, S. Obayya (eds.), Silicon nanowires for DNA sensing, Computational Photonic Sensors (Springer, New York, 2019), pp. 321–342

  12. X. Wang, J. Dong, Ultrashort polarization rotator based on cross-symmetry waveguide. Opt. Commun. 367, 68–71 (2016)

    Article  ADS  Google Scholar 

  13. D. Dai, Y. Tang, J.E. Bowers, Mode conversion in tapered submicron silicon ridge optical waveguides. Opt. Express 20(12), 13425–13439 (2012)

    Article  ADS  Google Scholar 

  14. M. Sieger, B. Mizaikoff, Optimizing the design of GaAs/AlGaAs thin-film waveguides for integrated mid-infrared sensors. Photon. Res. 4(3), 106–110 (2016)

    Article  Google Scholar 

  15. Q. Deng, Q. Yan, L. Liu, X. Li, J. Michel, Z. Zhou, Robust polarization-insensitive strip-slot waveguide mode converter based on symmetric multimode interference. Opt. Express 24(7), 7347–7355 (2016)

    Article  ADS  Google Scholar 

  16. T. Komljenovic, M. Davenport, J. Hulme, A.Y. Liu, C.T. Santis, A. Spott, S. Srinivasan, E.J. Stanton, C. Zhang, J.E. Bowers, Heterogeneous silicon photonic integrated circuits. J. Lightw. Technol. 34(1), 20–35 (2016)

    Article  ADS  Google Scholar 

  17. F. Dell’Olio, V.M. Passaro, Optical sensing by optimized silicon slot waveguides. Opt. Express 15(8), 4977–4993 (2007)

    Article  ADS  Google Scholar 

  18. V.R. Almeida, Q. Xu, C.A. Barrios, M. Lipson, Guiding and confining light in void nanostructure. Opt. Lett. 29(11), 1209–1211 (2004)

    Article  ADS  Google Scholar 

  19. Q. Xu, V.R. Almeida, R.R. Panepucci, M. Lipson, Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material. Opt. Lett. 29(14), 1626–1628 (2004)

    Article  ADS  Google Scholar 

  20. N. Eti, H. Kurt, Model analysis of ridge and rib types of silicon waveguides with void compositions. IEEE J. Quantum Electron. 52(10), 1–7 (2016)

    Article  Google Scholar 

  21. Y. Zhang, I. Bulu, W.-M. Tam, B. Levitt, J. Shah, T. Botto, M. Loncar, High-Q/V air-mode photonic crystal cavities at microwave frequencies. Opt. Express 19(10), 9371–9377 (2011)

    Article  ADS  Google Scholar 

  22. P. Xu, Y. Shi, High Q/V hybrid plasmonic photonic crystal nanobeam cavity: towards low threshold nanolasers application. Opt. Commun. 311, 234–238 (2013)

    Article  ADS  Google Scholar 

  23. T.-W. Lu, P.-T. Lin, P.-T. Lee, Photonic crystal horizontally slotted nanobeam cavity for silicon-based nanolasers. Opt. Lett. 37(4), 569–571 (2012)

    Article  ADS  Google Scholar 

  24. M. Banaee, A. Pattantyus-Abraham, M. McCutcheon, G. Rieger, J.F. Young, Efficient coupling of photonic crystal microcavity modes to a ridge waveguide. Appl. Phys. Lett. 90(19), 193106 (2007)

    Article  ADS  Google Scholar 

  25. A. Daraei, M.E. Daraei, Compact nanocavity with elliptical slot inside photonic wire bandgap materials including sidewalls gratings for biosensing. Appl. Phys. A 122(7), 662 (2016)

    Article  ADS  Google Scholar 

  26. Y. Yu, T.-H. Xiao, H.-L. Guo, Z.-Y. Li, Sensing of microparticles based on a broadband ultrasmall microcavity in a freely suspended microfiber. Photon. Res. 5(3), 143–150 (2017)

    Article  Google Scholar 

  27. P. Bettotti, A. Pitanti, E. Rigo, F. De Leonardis, V. Passaro, L. Pavesi, Modeling of slot waveguide sensors based on polymeric materials. Sensors 11(8), 7327–7340 (2011)

    Article  Google Scholar 

  28. H. Zengzhi, Y. Zhang, C. Zeng, D. Li, M.S. Nisar, J. Yu, J. Xia, High confinement factor ridge slot waveguide for optical sensing. IEEE Photon. Technol. Lett. 27(22), 2395–2398 (2015)

    Article  ADS  Google Scholar 

  29. B.E. Saleh, M.C. Teich, Fundamentals of Photonics, 2nd edn. (Wiley, New York, 2007)

    Google Scholar 

  30. J.D. Joannopoulos, S.G. Johnson, J.N. Winn, R.D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd edn. (Princeton University Press, Princeton, 2008)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmadreza Daraei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babakhani-Fard, MM., Daraei, A. & Hatefi-Kargan, N. Ultrahigh sensitive gas sensors based on slotted photonic wire-based structures including optical microcavities. Eur. Phys. J. Plus 135, 276 (2020). https://doi.org/10.1140/epjp/s13360-020-00285-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00285-z

Navigation