Skip to main content
Log in

Dielectric investigations on carbon nanotubes doped polymer dispersed liquid crystal films

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We obtained carbon nanotubes (CNTs) doped polymer dispersed liquid crystal (PDLC) films using the nematic E7 and polymethyl methacrylate, a composite that combines the benefic characteristic of the liquid crystals (LC) and carbon nanoparticles. The clearing temperatures recorded by differential scanning calorimetry for the PDLC blends were found to be lower than the value recorded for pure E7 LC mixture with no significant impact of the CNTs’ concentration. Broadband dielectric spectroscopy (DS) measurements were performed in the \( (10^{ - 1} \div 10^{7} )\;{\text{Hz}} \) frequency range, in the temperature domain (280–350) K. From the DS study, a two order magnitude variation of the conductivity over the entire temperature range was observed. The presence of CNTs results in an increase of electrical conductivity, with increasing concentration. Because the loss tangent spectra have complex shapes, they were fitted using the generalized Havriliak–Negami functions, and the characteristic relaxation times were extracted. The dependency of the characteristic relaxation time on temperature was modeled using the Vogel–Fulcher–Tammann function, and it showed a temperature variation according to the Arrhenius law. The increase of the CNT concentration increases the activation energy of the molecular electric dipoles of the LC. The interface LC-polymer interactions influence the nematic to isotropic phase transition of the LC.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. P.S. Drzaic, Liquid Crystal Dispersions (Word Sci, Singapore, 1995)

    Book  Google Scholar 

  2. H. Ramanitra, P. Chanclou, B. Vinouze, L. Dupont, Mol. Cryst. Liq. Cryst. 404(1), 57–73 (2003). https://doi.org/10.1080/15421400390249952

    Article  Google Scholar 

  3. H. Hakemi, Liq. Cryst. Today 26(3), 70–73 (2017). https://doi.org/10.1080/1358314X.2017.1359143

    Article  Google Scholar 

  4. M. Ozolinsh, G. Papelba, Ferroelectrics 304(1), 207–212 (2004). https://doi.org/10.1080/00150190490456790

    Article  Google Scholar 

  5. T.C. Hsu, C.H. Lu, Y.T. Huang, W.P. Shih, W.S. Chen, Sens. Actuators, A 169(2), 341–346 (2011). https://doi.org/10.1016/j.sna.2011.01.018

    Article  Google Scholar 

  6. J. Lagerwall, G. Scalia, J. Mater. Chem. 18(25), 2890–2898 (2008). https://doi.org/10.1039/b802707b

    Article  Google Scholar 

  7. M. Rahman, W.J. Lee, Phys. D: Appl. Phys., 42(6), 42, (063001-1)-(063001-12), (2009), https://doi.org/10.1088/0022-3727/42/6/063001

  8. L. Dolgov, O. Kovalchuk, N. Lebovka, S. Tomylko, O. Yaroshchuk, Liquid crystal dispersions of carbon nanotubes: dielectric, electro-optical and structural peculiarities, in Carbon Nanotubes, ed. by J.M. Marulanda (InTechOpen, 2010). https://doi.org/10.5772/39439

  9. I. Dierking, G. Scalia, P. Morales, D. LeClere, Adv. Mat. 16(11), 865–869 (2004). https://doi.org/10.1002/adma.200306196

    Article  Google Scholar 

  10. C.P. Ganea, D. Manaila-Maximean, U.P.B. Sci. Bull. Ser. A 73(4), 209–216 (2011)

    Google Scholar 

  11. S. Frunza, A. Schönhals, L. Frunza, T. Beica, I. Zgura, P. Ganea, D. Stoenescu, Chem. Phys. 372, 51–60 (2010). https://doi.org/10.1016/j.chemphys.2010.04.031

    Article  Google Scholar 

  12. S. Frunza, A. Schonhals, L. Frunza, P. Ganea, H. Kosslick, J. Harloff, A. Schulz, J. Phys. Chem. B 114, 12840–12846 (2010). https://doi.org/10.1021/jp1071617

    Article  Google Scholar 

  13. S. Frunza, L. Frunza, C.P. Ganea, I. Zgura, A. Schoenhals, UPB Sci. Bull. Ser. A 81, 223–236 (2019)

    Google Scholar 

  14. D. Manaila-Maximean, V. Cîrcu, P.C. Ganea, Beilstein J. Nanotechnol. 9, 164–174 (2018). https://doi.org/10.3762/bjnano.9.19

    Article  Google Scholar 

  15. D. Manaila-Maximean, V. Cîrcu, C.P. Ganea, A. Barar, O. Danila, T. Staicu, V.A. Loiko, A.V. Konkolovich, A.A. Miskevich, in (SPIE) Conference Series (Vol. 10977), p. 1097702, (2018), https://doi.org/10.1117/12.2326186

  16. V.A. Loiko, A.V. Konkolovich, A.A. Miskevich, D. Manaila-Maximean, O. Danila, V. Cîrcu, A. Bărar, J. Quant. Spectrosc. Radiat. Transf. 245, 106892 (2020). https://doi.org/10.1016/j.jqsrt.2020.106892

    Article  Google Scholar 

  17. K.B. Zegadlo, H. El Ouazzani, I. Cieslik, R. Weglowski, J. Zmija, S. Klosowicz, A. Majchrowski, J. Mysliwiec, B. Sahraoui, M.A. Karpierz, Opt. Mater. 34(10), 1704–1707 (2012). https://doi.org/10.1016/j.optmat.2012.02.027

    Article  ADS  Google Scholar 

  18. D. Donescu, R.C. Fierascu, M. Ghiurea, D. Manaila-Maximean, C.A. Nicolae, R. Somoghi, C.I. Spataru, N. Stanica, V. Raditoiu, E. Vasile, Appl. Surf. Sci. 414, 8–17 (2017). https://doi.org/10.1016/j.apsusc.2017.04.061

    Article  ADS  Google Scholar 

  19. S. Tomylko, O. Yaroshchuk, O. Kovalchuk, U. Maschke, R. Yamaguchi, Mol. Cryst. Liq. Cryst. 541(1), 35–273 (2011). https://doi.org/10.1080/15421406.2011.569658

    Article  Google Scholar 

  20. V.A. Loiko, Konkolovich, A.A. Miskevich et al., Opt. Spectrosc. 128, 331–338 (2020). https://doi.org/10.1134/s0030400x20030121

    Article  ADS  Google Scholar 

  21. T. Lahiri, S.K. Pushkar, P. Poddar, Phys. B 588, 412177 (2020). https://doi.org/10.1016/j.physb.2020.412177

    Article  Google Scholar 

  22. L. Lisetski, M. Soskin, N. Lebovka. Carbon nanotubes in liquid crystals: fundamental properties and applications, in Physics of Liquid Matter: Modern Problems, Springer Proceedings in Physics, ed. by L. Bulavin, N. Lebovka, (2015), p. 171, https://doi.org/10.1007/978-3-319-20875-6_10

  23. S. Iijima, Nature 354, 56–58 (1991). https://doi.org/10.1038/354056a0

    Article  ADS  Google Scholar 

  24. M.S. Dresselhaus, G. Dresselhaus, R. Saito, Carbon 33(7), 883–891 (1995). https://doi.org/10.1016/0008-6223(95)00017-8

    Article  Google Scholar 

  25. M.S.E. Peterson, G. Georgiev, T.J. Atherton, P. Cebe, Liq. Cryst. 45, 450–458 (2018). https://doi.org/10.1080/02678292.2017.1346212

    Article  Google Scholar 

  26. Y. Wu, H. Cao, M. Duan, E. Li, H. Wang, Z. Yang, D. Wang, W. He, Liq. Cryst. 7, 1023–1031 (2018). https://doi.org/10.1080/02678292.2017.1404153

    Article  Google Scholar 

  27. D. Manaila-Maximean, O. Danila, C.P. Ganea, P.L. Almeida, Eur. Phys. J. Plus 133(4), 159 (2018). https://doi.org/10.1140/epjp/i2018-11997-8

    Article  Google Scholar 

  28. O. Danila, J. Quant. Spectrosc. Radiat. Transf. 254, 107209 (2020). https://doi.org/10.1016/j.jqsrt.2020.107209

    Article  Google Scholar 

  29. Z.Z. Zhong, D.E. Schuele, W.L. Gordon, K.J. Adamic, R.B. Akins, J. Pol. Sci. Part B Polym. Phys. 30(13), 1443–1449 (1992). https://doi.org/10.1002/polb.1992.090301303

    Article  ADS  Google Scholar 

  30. T. Kyu, M. Mustafa, J.-C. Yang, J. Y. Kim, P. Palffy-Muhoray, in Polymer Solutions, Blends, and Interfaces, ed. by I. Noda, D.N. Rubingh, (Elsevier, 1992), p. 245

  31. H. Duran, B. Gazdecki, A. Yamashita, T. Kyu, Liq. Cryst. 32(7), 815–821 (2005). https://doi.org/10.1080/02678290500191204

    Article  Google Scholar 

  32. K.P. Sigdel, G.S. Iannacchione, Eur. Phys. J. E 34, 34 (2011)

    Article  Google Scholar 

  33. P. Kalakonda, R. Basu, I.R. Nemitz, C. Rosenblatt, G.S. Iannacchione, J. Chem. Phys. 140, 104908 (2014). https://doi.org/10.1063/1.4867791

    Article  ADS  Google Scholar 

  34. J.R. Kelly, D. Seekola, in Liquid Crystal Displays and Applications, ed. by J.W. Doane, Z. Yaniv, SPIE, 1257,17, 17–28, (1990). https://doi.org/10.1117/12.19923

  35. M.T. Viciosa, A.M. Nunes, A. Fernandes, P.L. Almeida, M.H. Godinho, M.D. Dionísio, Liq. Cryst. 29, 429–441 (2002). https://doi.org/10.1080/02678290110113478

    Article  Google Scholar 

  36. S. Urban, B. Gestblom, H. Kresse, A. Dabrowski, Z. Naturforsch. A, 51(7), 834–842, (1996), https://doi.org/10.1515/zna-1996-0707

  37. C.P. Ganea, Rom. J. Phys. 57(3–4), 664–675 (2012)

    Google Scholar 

  38. A. Yildirim, P. Szymoniak, K. Sentker, M. Butschies, A. Buhlmeyer, P. Huber, S. Laschat, A. Schonhals, Phys. Chem. Chem. Phys. 20, 5626 (2018). https://doi.org/10.1039/C7CP08186C

    Article  Google Scholar 

Download references

Acknowledgements

Acknowledgement PCG acknowledges the funding through Core Program PN19-03 (Contract No. 21 N/08.02.2019), from Romanian Ministry of Research and Innovation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Doina Manaila-Maximean or Viorel Cîrcu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ganea, C.P., Manaila-Maximean, D. & Cîrcu, V. Dielectric investigations on carbon nanotubes doped polymer dispersed liquid crystal films. Eur. Phys. J. Plus 135, 797 (2020). https://doi.org/10.1140/epjp/s13360-020-00795-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00795-w

Navigation