Skip to main content

Advertisement

Log in

Modeling breast tumor growth by a randomized logistic model: A computational approach to treat uncertainties via probability densities

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We consider a randomized discrete logistic equation to describe the dynamics of breast tumor volume. We propose a method, that takes advantage of the principle of maximum entropy, to assign reliable distributions to model inputs (initial condition and coefficients) and sample data, respectively. Since the distributions of coefficients depend on certain parameters, we design a computational procedure to determine the above-mentioned parameters using the information of the probabilistic distributions. The proposed method is successfully applied to model the breast tumor volume using real data. The approach seems to be flexible enough to be adapted to other stochastic models in future contributions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. D. Delen, G. Walker, A. Kadam, Predicting breast cancer survivability: a comparison of three data mining methods. Artif. Intell. Med. 34(2), 113–127 (2005)

    Article  Google Scholar 

  2. H.-C. Wei, Mathematical modeling of tumor growth: the mcf-7 breast cancer cell line 16(mbe–16–06–325), 6512 (2019). https://doi.org/10.3934/mbe.2019325

  3. N. Bellomo, E. de Angelis, Selected Topics in Cancer Modeling: Genesis, Evolution, Immune Competition, and Therapy (Springer Science & Business Media, Cham, 2008)

    MATH  Google Scholar 

  4. N. Boyd, L. Martin, A. Gunasekara, O. Melnichouk, G. Maudsley, C. Peressotti, M. Yaffe, S. Minkin, Mammographic density and breast cancer risk: evaluation of a novel method of measuring breast tissue volumes. Cancer Epidemiol. Prevent. Biomark. 18(6), 1754–1762 (2009). https://doi.org/10.1158/1055-9965.EPI-09-0107

    Article  Google Scholar 

  5. J.E. Joy, E.E. Penhoet, D.B. Petitti, Saving women’s Lives: Strategies for Improving Breast Cancer Detection and Diagnosis (National Academies Press (US), Washington, 2005)

    Google Scholar 

  6. J.V. Michalowicz, J.M. Nichols, F. Bucholtz, Handbook of Differential Entropy (CRC Press, Boca Raton, 2013)

    Book  Google Scholar 

  7. C. Burgos-Simón, N. García-Medina, D. Martínez-Rodríguez, R.-J. Villanueva, Mathematical modeling of the dynamics of the bladder cancer and the immune response applied to a patient: evolution and short-term prediction. Math. Methods Appl. Sci. 42(17), 5746–5757 (2019). https://doi.org/10.1002/mma.5536

    Article  ADS  MathSciNet  Google Scholar 

  8. J. Manimaran, L. Shangerganesh, A. Debbouche, V. Antonov, Numerical solutions for time-fractional cancer invasion system with nonlocal diffusion. Front. Phys. 7, 93 (2019). https://doi.org/10.3389/fphy.2019.00093

    Article  Google Scholar 

  9. S. Chakraborty, A. Debbouche, P.K. Roy, A mathematical modelling for treatment of HPV associated cervical cancer: Nk and effector t cell based control study. Nonlinear Stud. 27(2), 325–336 (2020)

    MathSciNet  MATH  Google Scholar 

  10. D.-A. Botesteanu, S. Lipkowitz, J.-M. Lee, D. Levy, Mathematical models of breast and ovarian cancers. Wiley Interdiscip. Rev. Syst. Biol. Med. 8(4), 337–362 (2016). https://doi.org/10.1002/wsbm.1343

    Article  Google Scholar 

  11. N.C. Atuegwu, L.R. Arlinghaus, X. Li, A.B. Chakravarthy, V.G. Abramson, M.E. Sanders, T.E. Yankeelov, Parameterizing the logistic model of tumor growth by DW-MRI and DCE-MRI data to predict treatment response and changes in breast cancer cellularity during neoadjuvant chemotherapy. Transl. Oncol. 6(3), 256–264 (2013). https://doi.org/10.1593/tlo.13130

    Article  Google Scholar 

  12. H. Enderling, M.A. Chaplain, A.R. Anderson, J.S. Vaidya, A mathematical model of breast cancer development, local treatment and recurrence. J. Theor. Biol. 246(2), 245–259 (2007). https://doi.org/10.1016/j.jtbi.2006.12.010

    Article  MathSciNet  MATH  Google Scholar 

  13. E. Allen, Modeling with Itô Stochastic Differential Equations, vol. 22 (Springer Science & Business Media, Cham, 2007)

    MATH  Google Scholar 

  14. D. Nualart, The Malliavin Calculus and Related Topics, vol. 1995 (Springer, Berlin, 2006)

    MATH  Google Scholar 

  15. R.C. Smith, Uncertainly Quantification: Theory, Implementation, and Applications. Computational Science & Engineering (SIAM, Philadelphia, 2013)

    Google Scholar 

  16. M.-C. Casabán, J.-C. Cortés, J.-V. Romero, M.-D. Roselló, Probabilistic solution of random SI-type epidemiological models using the random variable transformation technique. Commun. Nonlinear Sci. Numer. Simul. 24, 86–97 (2015). https://doi.org/10.1016/j.cnsns.2014.12.016

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. M.-C. Casabán, J.-C. Cortés, A. Navarro-Quiles, J.-V. Romero, M.-D. Roselló, R.-J. Villanueva, A comprehensive probabilistic solution of random SIS-type epidemiological models using the random variable transformation technique. Commun. Nonlinear Sci. Numer. Simul. 32, 199–210 (2016). https://doi.org/10.1016/j.cnsns.2015.08.009

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. M. Ezechiáš, T. Cajthaml, Receptor partial agonism and method to express receptor partial activation with respect to novel full logistic model of mixture toxicology. Toxicology 393, 26–33 (2018)

    Article  Google Scholar 

  19. F. Brauer, C. Castillo-Chavez, C. Castillo-Chavez, Mathematical Models in Population Biology and Epidemiology, vol. 2 (Springer, Berlin, 2012)

    Book  Google Scholar 

  20. C. Salas-Eljatib, A. Fuentes-Ramirez, T.G. Gregoire, A. Altamirano, V. Yaitul, A study on the effects of unbalanced data when fitting logistic regression models in ecology. Ecol. Ind. 85, 502–508 (2018)

    Article  Google Scholar 

  21. V.G. Vaidya, F.J. Alexandro Jr., Evaluation of some mathematical models for tumor growth. Int. J. Biomed. Comput. 13(1), 19–35 (1982). https://doi.org/10.1016/0020-7101(82)90048-4

    Article  MathSciNet  Google Scholar 

  22. E.C. Pielou, An Introduction to Mathematical Ecology (Wiley-Inter-science, New York, 1969)

    MATH  Google Scholar 

  23. J.G. Skellam, Random dispersal in theoretical populations. Biometrika 38(1/2), 196–218 (1951)

    Article  MathSciNet  Google Scholar 

  24. P.-F. Verhulst, Notice sur la loi que la population suit dans son accroissement. Corresp. Math. Phys. 10, 113–126 (1838)

    Google Scholar 

  25. T.T. Soong, Random differential equations in science and engineering (Academic Press, 1973). ISBN 978-0-12-654850-1

  26. J.-C. Cortés, A. Navarro-Quiles, J.-V. Romero, M.-D. Roselló, (cmmse2018 paper) solving the random Pielou logistic equation with the random variable transformation technique: theory and applications. Math. Methods Appl. Sci. 42(17), 5708–5717 (2019). https://doi.org/10.1002/mma.5440

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. A. Worschech, N. Chen, A.Y. Yong, Q. Zhang, Z. Pos, S. Weibel, V. Raab, M. Sabatino, A. Monaco, H. Liu et al., Systemic treatment of xenografts with vaccinia virus glv-1h68 reveals the immunologic facet of oncolytic therapy. BMC Genom. 10(1), 301 (2009). https://doi.org/10.1186/1471-2164-10-301

    Article  Google Scholar 

  28. H. Caysa, S. Hoffmann, J. Luetzkendorf, L.P. Mueller, S. Unverzagt, K. Mäder, T. Mueller, Monitoring of xenograft tumor growth and response to chemotherapy by non-invasive in vivo multispectral fluorescence imaging. PLoS ONE 7(10), e47927 (2012)

    Article  ADS  Google Scholar 

  29. The MathWorks Inc. (2020) Particle Swarm Optimization. https://es.mathworks.com/help/gads/particleswarm.html

  30. L. Devroye, Nonuniform random variate generation. Handb. Oper. Res. Manag. Sci. 13, 83–121 (2006)

    Google Scholar 

  31. T. Weise, Global optimization algorithms-theory and application. Self-Published Thomas Weise (2009)

  32. N. Khemka, C. Jacob, Exploratory toolkit for evolutionary and swarm-based optimization. Math. J. 11(3), 376–391 (2010). https://doi.org/10.3888/tmj.11.3-5

    Article  Google Scholar 

  33. Y. Khan, H. Vazquez-Leal, Q. Wu, An efficient iterated method for mathematical biology model. Neural Comput. Appl. 23(3–4), 677–682 (2013)

    Article  Google Scholar 

  34. E.F.D. Goufo, Y. Khan, Q.A. Chaudhry, Hiv and shifting epicenters for covid-19, an alert for some countries. Chaos Solitons Fractals 139, 110030 (2020)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work has been supported by the Spanish Ministerio de Economía, Industria y Competitividad (MINECO), the Agencia Estatal de Investigación (AEI), and Fondo Europeo de Desarrollo Regional (FEDER UE) Grants MTM2017-89664-P and RTI2018-095180-B-I00.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clara Burgos-Simón.

Ethics declarations

Conflict of interest

The authors declare that they do not have any conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burgos-Simón, C., Cortés, JC., Martínez-Rodríguez, D. et al. Modeling breast tumor growth by a randomized logistic model: A computational approach to treat uncertainties via probability densities. Eur. Phys. J. Plus 135, 826 (2020). https://doi.org/10.1140/epjp/s13360-020-00853-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00853-3

Navigation