Skip to main content
Log in

P-stars in the gravitational wave era

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

P-stars are compact relativistic stars made of deconfined up and down quarks in a chromomagnetic condensate proposed by us long time ago. P-stars do not admit a critical mass thereby they are able to overcome the gravitational collapse to black holes. In this work we discuss in greater details our theoretical proposal for P-stars. We point out that our theory for compact relativistic stars stems from our own understanding of the confining quantum vacuum supported by estensive non-perturbative numerical simulations of quantum chromodynamics on the lattice. We compare our proposal with the constraints arising from the recent observations of massive pulsars, the gravitational event GW170817 and the precise determination of the PSR J0030+0451 mass and radius from NICER data. We argue that core-collapsed supernovae could give rise to a P-star instead of a neutron star. In this case we show that the birth of a P-star could solve the supernova explosion problem leading to successful supernova explosions with total energies up to \(10^{53}\) erg. We critically compare P-stars with the gravitational wave event GW170817 and the subsequent electromagnetic follow-up, the short Gamma Ray Burst GRB170817A and the kilonova AT2017gfo. We also present an explorative study on gravitational wave emission from coalescing binary P-stars with masses \(M_1 \simeq M_2 \simeq 30 M_{\odot }\). We attempt a qualitative comparison with the gravitational wave event GW150914. We find that the gravitational wave strain amplitude from massive P-star binaries could mimic the ringdown gravitational wave emission by coalescing black hole binaries. We point out that a clear signature for massive P-stars would be the detection of wobble frequencies in the gravitational wave strain amplitude in the post-merger phase of two coalescing massive compact objects with unequal masses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. Note that through the paper we are adopting cgs units; however, in this Section we use the natural units of high-energy physics were the Planck constant and the speed of light are set to one, \(\hslash = c = 1\). In these units the color coupling constant g is dimensionless and \(\sqrt{gH}\) has dimension of energy. To switch to cgs units it suffices to replace gH with \(\hslash c gH\). It is also useful to point out that 1.0 GeV\(^2 \, \simeq \,\) 5.13 \(\times \) 10\(^{19}\) G.

  2. Note that, since we set \(c=1\), the energy density coincides with the mass density \(\rho \).

  3. We shall follow the conventions adopted in Ref. [39].

  4. Equations (2.22) and (2.23) in cgs units can be found in Ref. [23].

  5. The range of values displayed in Eq. (2.27) is our estimate of the lattice numerical results presented in Refs. [31,32,33] extrapolated to the physical point where the mass of the pion is about 140 MeV.

  6. Note that 1 GeV\(^4 = 2.086 \times 10^{35}\) dyn/cm\(^2\) and 1 GeV\(^4\)/c\(^2\) = 2.32 \(\times 10^{14}\) gr/cm\(^3\).

  7. For a detailed review that includes an illustration of X-ray modelling techniques and associated uncertainties, see Ref. [89].

  8. This corresponds to \(c_s^\mathrm{eff} \simeq 0.2 \, c\).

References

  1. B.P. Abbott et al., The LIGO scientific and virgo collaborations, Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116, 061102 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  2. B.P. Abbott et al., The LIGO scientific and virgo collaborations, GW151226: observation of gravitational waves from a 22-solar-mass binary black hole coalescence. Phys. Rev. Lett. 116, 241103 (2016)

    Article  ADS  Google Scholar 

  3. B.P. Abbott et al., The LIGO Scientific and virgo collaborations, Binary black hole mergers in the first advanced LIGO observing run. Phys. Rev. X 6, 041015 (2016)

    Google Scholar 

  4. B.P. Abbott, et al., The LIGO scientific and virgo collaborations, GW170104: observation of a 50-solar-mass binary black hole coalescence at redshift 0.2, Phys. Rev. Lett. 118 (2017) 221101

  5. B.P. Abbott et al., The LIGO scientific and virgo collaborations, GW170608: observation of a 19 solar-mass binary black hole coalescence. Astrophys. J. Lett. 851, L35 (2017)

    Article  ADS  Google Scholar 

  6. B.P. Abbott et al., The LIGO scientific and virgo collaborations, GW170814: a three-detector observation of gravitational waves from a binary black hole coalescence. Phys. Rev. Lett. 119, 141101 (2017)

    Article  ADS  Google Scholar 

  7. B.P. Abbott et al., The LIGO scientific and virgo collaborations, GW170817: observation of gravitational waves from a binary neutron star inspiral. Phys. Rev. Lett. 119, 161101 (2017)

    Article  ADS  Google Scholar 

  8. B.P. Abbott et al., The LIGO scientific and virgo collaborations, GWTC-1: a gravitational-wave transient catalog of compact binary mergers observed by LIGO and virgo during the first and second observing runs. Phys. Rev. X 9, 031040 (2019)

    Google Scholar 

  9. B.P. Abbott et al., The LIGO scientific and virgo collaborations, Tests of general relativity with GW150914. Phys. Rev. Lett. 116, 221101 (2016)

    Article  ADS  Google Scholar 

  10. B.P. Abbott et al., The LIGO scientific and virgo collaborations, Properties of the binary black hole merger GW150914. Phys. Rev. Lett. 116, 241102 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  11. B.P. Abbott et al., The LIGO scientific and virgo collaborations, The basic physics of the binary black hole merger GW150914. Annalen der Physik 529, 1600209 (2017)

    Article  ADS  Google Scholar 

  12. LIGO Scientific Collaboration and Virgo Collaboration, Fermi GBM, INTEGRAL, IceCube Collaboration, AstroSat Cadmium Zinc Telluride Imager Team, IPN Collaboration, The Insight-Hxmt Collaboration, ANTARES Collaboration, The Swift Collaboration, AGILE Team, The 1M2H Team, The Dark Energy Camera GW-EM Collaboration and the DES Collaboration, The DLT40 Collaboration, GRAWITA: GRAvitational Wave Inaf TeAm, The Fermi Large Area Telescope Collaboration, ATCA: Australia Telescope Compact Array, ASKAP: Australian SKA Pathfinder, Las Cumbres Observatory Group, OzGrav, DWF (Deeper, Wider, Faster Program), AST3,and CAASTRO Collaborations, The VINROUGE Collaboration, MASTER Collaboration, J-GEM, GROWTH, JAGWAR, Caltech-NRAO, TTU-NRAO, and NuSTAR Collaborations, Pan-STARRS, The MAXI Team, TZAC Consortium, KU Collaboration, Nordic Optical Telescope, ePESSTO, GROND, Texas Tech University, SALT Group, TOROS: Transient Robotic Observatory of the South Collaboration, The BOOTES Collaboration, MWA: Murchison Widefield Array, The CALET Collaboration, IKI-GW Follow-up Collaboration, H.E.S.S. Collaboration, LOFAR Collaboration, LWA: Long Wavelength Array, HAWC Collaboration, The Pierre Auger Collaboration, ALMA Collaboration, Euro VLBI Team, Pi of the Sky Collaboration, The Chandra Team at McGill University, DFN: Desert Fireball Network, ATLAS, High Time Resolution Universe Survey, RIMAS and RATIR, and SKA South Africa/MeerKAT, Multi-messenger Observations of a Binary Neutron Star Merger, Astrophys. J. Lett. 848 (2017) L12

  13. LIGO scientific collaboration and virgo collaboration, Fermi Gamma-ray burst monitor, and INTEGRAL, Gravitational waves and gamma-rays from a binary neutron star merger: GW170817 and GRB 170817A. Astrophys. J. Lett. 848, L13 (2017)

    Article  ADS  Google Scholar 

  14. A. Hewish, S.G. Bell, J.D.H. Pilkington, P.F. Scott, R.A. Collins, Observation of a rapidly pulsating radio source. Nature 217, 709 (1968)

    Article  ADS  Google Scholar 

  15. W. Baade, F. Zwicky, On super-novae. Proc. Nat. Acad. Sci. 20, 254 (1934)

    Article  ADS  Google Scholar 

  16. W. Baade, F. Zwicky, Remarks on super-novae and cosmic rays. Phys. Rev. 46, 76 (1934)

    Article  ADS  Google Scholar 

  17. T. Gold, Rotating neutron stars as the origin of the pulsating radio sources. Nature 218, 731 (1968)

    Article  ADS  Google Scholar 

  18. F. Pacini, Rotating neutron stars, pulsars and supernova remnants. Nature 219, 145 (1968)

    Article  ADS  Google Scholar 

  19. S.L. Shapiro, S.A. Teukolsky, Black Holes, White Dwarfs, and Neutron Stars: The Physics of Compact Objects (Wiley, New York, 1983)

    Book  Google Scholar 

  20. P. Cea, P-stars. Int. J. Mod. Phys. D 13, 1917 (2004)

    Article  ADS  MATH  Google Scholar 

  21. P. Cea, RXJ1856.5-3754 and RXJ0720.4-3125 are P-stars. J. Cosmol. Astropart. Phys. 03, 011 (2004)

    Article  ADS  Google Scholar 

  22. P. Cea, Magnetars: structure and evolution from P-star models. Astron. Astrophys. 450, 199 (2006)

    Article  ADS  MATH  Google Scholar 

  23. P. Cea, Comparing P-stars with observations. Astrophys. J. 674, 1056 (2008)

    Article  ADS  Google Scholar 

  24. V. Cardoso, P. Pani, Testing the nature of dark compact objects: a status report. Liv. Rev. Rel. 22, 4 (2019)

    Article  Google Scholar 

  25. K. Akiyama, et al., The event horizon telescope collaboration, first M87 event horizon telescope results. I. The shadow of the supermassive black hole, Astrophys. J. 875 (2019) L1

  26. K. Akiyama, et al., The Event horizon telescope collaboration, first M87 event horizon telescope results. II. Array and instrumentation, Astrophys. J. 875 (2019) L2

  27. K. Akiyama, et al., The Event horizon telescope collaboration, first m87 event horizon telescope results. III. Data processing and calibration, Astrophys. J. 875 (2019) L3

  28. K. Akiyama, et al., The event horizon telescope collaboration, first M87 event horizon telescope results. IV. Imaging the central supermassive black hole, Astrophys. J. 875 (2019) L4

  29. K. Akiyama, et al., The Event horizon telescope collaboration, first M87 event horizon telescope results. V. Physical origin of the asymmetric ring, Astrophys. J. 875 (2019) L5

  30. K. Akiyama, et al., The event horizon telescope collaboration, first M87 Event horizon telescope results. VI. The shadow and mass of the central black hole, Astrophys. J. 875 (2019) L6

  31. P. Cea, L. Cosmai, Abelian chromomagnetic fields and confinement. J. High Energy Phys. 02, 031 (2003)

    Article  ADS  MATH  Google Scholar 

  32. P. Cea, L. Cosmai, Color dynamics in external fields. J. High Energy Phys. 08, 079 (2005)

    Article  ADS  Google Scholar 

  33. P. Cea, L. Cosmai, M. D’Elia, QCD Dynamics in a Constant chromomagnetic field. J. High Energy Phys. 0712, 097 (2007)

    Article  ADS  Google Scholar 

  34. M. Tinkham, Introduction to Superconductivity, 2nd edn. (McGraw-Hill Inc., New York, 1996)

    Google Scholar 

  35. R.P. Feynman, The qualitative behavior of Yang-Mills theory in 2 + 1 dimensions. Nucl. Phys. B 188, 479 (1981)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. P. Cea, Stability analysis of the nielsen-olesen unstable modes. Phys. Lett. B 193, 268 (1987)

    Article  ADS  Google Scholar 

  37. P. Cea, SU(2) Gauge theory in a constant chromomagnetic background field. Phys. Rev. D 37, 1637 (1988)

    Article  ADS  Google Scholar 

  38. R.F. Tooper, General relativistic polytropic fluid spheres. Astrophys. J. 140, 434 (1964)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. N.K. Glendenning, Compact Stars, Nuclear Physics, Particle Physics and General Relativity, 2nd edn., Astronomy and Astrophysics Library (Springer, Berlin, 2000)

    MATH  Google Scholar 

  40. R.C. Tolman, Static solution of Einstein’s field equations for spheres of fluid. Phys. Rev. 55, 364 (1939)

    Article  ADS  MATH  Google Scholar 

  41. J.R. Oppenheimer, G.M. Volkoff, On massive neutron cores. Phys. Rev. 55, 374 (1939)

    Article  ADS  MATH  Google Scholar 

  42. J.M. Lattimer, The nuclear equation of state and neutron star masses. Ann. Rev. Nucl. Part. Sci. 62, 485 (2012)

    Article  ADS  Google Scholar 

  43. M. Baldo, G.F. Burgio, The nuclear symmetric energy. Prog. Part. Nucl. Phys. 91, 203 (2016)

    Article  ADS  Google Scholar 

  44. J.M. Lattimer, M. Prakash, The equation of state of hot, dense matter and neutron stars. Phys. Rep. 621, 127 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  45. M. Oertel, M. Hempel, T. Klähn, S. Typel, Equation of state for supernovae and compact stars. Rev. Mod. Phys. 89, 015007 (2017)

    Article  ADS  Google Scholar 

  46. G. Baym, T. Hatsuda, T. Kojo, P.D. Powell, Y. Song, T. Takatsuka, From hadrons to quarks in neutron stars. Rept. Prog. Phys. 81, 056902 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  47. P.B. Demorest, T. Pennucci, S.M. Ransom, M.S.E. Roberts, J.W. Hessels, A Two-solar-mass neutron star measured using shapiro delay. Nature 467, 1081 (2010)

    Article  ADS  Google Scholar 

  48. J. Antoniadis et al., Pulsar in a compact relativistic binary. Science 340, 123332 (2013)

    Article  Google Scholar 

  49. Z. Arzoumanian et al., The NANOGrav 11-year Data Set: high-precision timing of 45 millisecond pulsars. Astrophys. J. Suppl. 235, 37 (2018)

    Article  ADS  Google Scholar 

  50. M. Linares, T. Shahbar, J. Casares, Peering into the Dark side: magnesium lines establish a massive neutron star in PSR J2215+5135. Astrophys. J. 859, 54 (2018)

    Article  ADS  Google Scholar 

  51. H.T. Cromartie et al., Relativistic shapiro delay measurements of an extremely massive millisecond pulsar. Nature Astron. 4, 72 (2020)

    Article  ADS  Google Scholar 

  52. B.P. Abbott et al., The LIGO scientific and virgo collaborations, GW170817: measurements of neutron star radii and equation of state. Phys. Rev. Lett. 121, 161101 (2018)

    Article  ADS  Google Scholar 

  53. B.P. Abbott, et al., The LIGO scientific and virgo collaborations, GW190814: gravitational waves from the coalescence of a 23 solar mass black hole with a 2.6 solar mass compact object, Astrophys. J. Lett. 896 (2020) L44

  54. F. Douchin, P. Haensel, A Unified equation of state of dense matter and neutron star structure. Astron. Astrophys. 380, 151 (2001)

    Article  ADS  Google Scholar 

  55. P. Haensel, M. Kutschera, M. Prószyński, Uncertainty in the saturation density of nuclear matter and neutron star models. Astron. Astrophys. 102, 299 (1981)

    ADS  Google Scholar 

  56. J.M. Lattimer, M. Prakash, Neutron star structure and the equation of state. Astrophys. J. 550, 426 (2001)

    Article  ADS  Google Scholar 

  57. T.E. Riley et al., A NICER View of PSR J0030+0451: millisecond pulsar parameter estimation. Astrophys. J. Lett. 887, L21 (2019)

    Article  ADS  Google Scholar 

  58. M.C. Miller et al., PSR J0030+0451 mass and radius from NICER data and implications for the properties of neutron star matter. Astrophys. J. Lett. 887, L24 (2019)

    Article  ADS  Google Scholar 

  59. G. Raaijmakers et al., A NICER view of PSR J0030+0451: implication for the dense matter equation of state. Astrophys. J. Lett. 887, L22 (2019)

    Article  ADS  Google Scholar 

  60. R. Jong, D. Wen, H. Chen, Univeral behaviour of a compact star based upon the gravitational binding energy. Phys. Rev. D 100, 123010 (2019)

    Article  ADS  Google Scholar 

  61. S.E. Woosley, T.A. Weaver, The physics of supernova explosions. Ann. Rev. Astron. Astrophys. 24, 205 (1986)

    Article  ADS  Google Scholar 

  62. H.A. Bethe, Nuclear physics needed for the theory of supernovae. Ann. Rev. Nucl. Part. Sci. 38, 1 (1988)

    Article  ADS  Google Scholar 

  63. W.D. Arnett, J.N. Bahcall, R.P. Kirshner, S.E. Woosley, Supernova 1987A. Ann. Rev. Astron. Astrophys. 27, 629 (1989)

    Article  ADS  Google Scholar 

  64. H.A. Bethe, Supernova mechanisms. Rev. Mod. Phys. 62, 801 (1990)

    Article  ADS  Google Scholar 

  65. W.D. Arnett, Supernovae and nucleosynthesis. An investigation of the history of matter, from the big bang to the present (Princeton University Press, Princeton, 1996)

    Book  Google Scholar 

  66. H.-T. Janka, Explosion mechanisms of core-collapse supernovae. Ann. Rev. Nucl. Part. Sci. 62, 407 (2012)

    Article  ADS  Google Scholar 

  67. K. Scholberg, Supernova neutrino detection. Ann. Rev. Nucl. Part. Sci. 62, 81 (2012)

    Article  ADS  Google Scholar 

  68. K. Kotaka, T. Takiwaki, Y. Suwa, W.I. Nakano, S. Kawagoe, Y. Masada, S.-I. Fujimoto, Multimessengers from core-collapse supernovae: multidimensionality as a key to bridge theory and observation. Adv. Astron. 2012, 428757 (2012)

    ADS  Google Scholar 

  69. A. Burrows, Perspectives on core-collapse supernova theory. Rev. Mod. Phys. 85, 245 (2013)

    Article  ADS  Google Scholar 

  70. T. Foglizzo et al., The explosion mechanism of core-collapse supernovae: progress in supernova theory and experiments. Publ. Astron. Soc. Austral. 32, e009 (2015)

    Article  ADS  Google Scholar 

  71. S.J. Smartt, Observational constraints on the progenitors of core-collapse supernovae: the case for missing high mass stars. Publ. Astron. Soc. Austral. 32, e016 (2015)

    Article  ADS  Google Scholar 

  72. A. Mirizzi, I. Tamborra, H.-T. Janka, N. Saviano, K. Scholberg, R. Bollig, L. Hudepohl, S. Chakraborty, Supernova neutrinos: production, oscillation and detection. Riv. Nuovo Cim. 39, 1 (2016)

    ADS  Google Scholar 

  73. H.-T. Janka, T. Nelson, A. Summa, Physics of core-collapse supernovae in three dimensions: a sneak preview. Ann. Rev. Nucl. Part. Sci. 66, 341 (2016)

    Article  ADS  Google Scholar 

  74. B. Müller, The status of multi-dimensional core-collapse supernova models. Publ. Astron. Soc. Austral. 33, e048 (2016)

    Article  ADS  Google Scholar 

  75. D. Andrew Howell, Superluminous Supernovae, in: Handbook of Supernovae, A. W. Alsabti and P. Murdin Editors, Springer, Berlin, 2017, pp. 431

  76. T.J. Moriya, E.I. Sorokina, R.A. Chevalier, Superluminous supernovae. Space Sci. Rev. 214, (2018)

  77. A. Gal-Yam, The most luminous supernovae. Ann. Rev. Astron. Astrophys. 57, 305 (2019)

    Article  ADS  Google Scholar 

  78. B.P. Abbott et al., The LIGO scientific and virgo collaborations, properties of the binary neutron star merger. Phys. Rev. X 9, 011001 (2019)

    Google Scholar 

  79. E.E. Flanagan, T. Hinderer, Constraining Neutron-star tidal love numbers with gravitational-wave detectors. Phys. Rev. D 77, 021502 (2008)

    Article  ADS  Google Scholar 

  80. T. Hinderer, Tidal love numbers of neutron stars. Astrophys. J. 677, 1216 (2008)

    Article  ADS  Google Scholar 

  81. T. Hinderer, Erratum: tidal love numbers of neutron stars. Astrophys. J. 697, 679 (2009)

    Article  Google Scholar 

  82. K.S. Thorne, Tidal stabilization of rigidly rotating, fully relativistic neutron stars. Phys. Rev. D 58, 124031 (1998)

    Article  ADS  Google Scholar 

  83. A.E.H. Love, The yielding of the earth to disturbing forces. Proc. R. Soc. A 82, 73 (1909)

    ADS  MATH  Google Scholar 

  84. T. Hinderer, B.D. Lackey, R.N. Lang, J.S. Read, Tidal deformability of neutron stars with realistic equations of sate and their gravitational wave signatures in binary inspiral. Phys. Rev. D 81, 123016 (2010)

    Article  ADS  Google Scholar 

  85. S. Postnikov, M. Prakashand, J.M. Lattimer, Tidal love numbers of neutron and self-bound quark stars, binary inspiral. Phys. Rev. D 82, 024016 (2010)

    Article  ADS  Google Scholar 

  86. S. De, D. Finstad, J.M. Lattimer, D.A. Brown, E. Berger, C.M. Biwer, Tidal deformabilities and radii of neutron stars from observation of GW170817. Phys. Rev. Lett. 127, 091102 (2018)

    Article  ADS  Google Scholar 

  87. D. Radice, L. Dai, Multimessenger parameter estimation of GW170817. Eur. Phys. J. A 55, 50 (2019)

    Article  ADS  Google Scholar 

  88. B. Biswas, P. Char, R. Nandi, S. Bose, Hint of a Tension Between Nuclear Physics and Astrophysical Observations, LIGO Preprint number LIGO-P2000221, arXiv:2008.01582 [astro-ph.HE] (2020)

  89. F. Özel, P. Freire, Masses, Radii and the equation of state of neutron stars. Ann. Rev. Astron. Astrophys. 54, 401 (2016)

    Article  ADS  Google Scholar 

  90. L. Wasserman, S.L. Shapiro, Masses and Radii, and magnetic fields of pulsating x-ray sources: Is the “standard” model self-consistent? Astrophys. J. 265, 1036 (1983)

    Article  ADS  Google Scholar 

  91. A.P. Reynolds, H. Quaintrell, M.D. Still, P. Roche, D. Chakrabarty, S.E. Levin, A new mass estimate for hercules X-1. Mon. Not. R. Astron. Soc. 288, 43 (1997)

    Article  ADS  Google Scholar 

  92. A.P. Reynolds, P. Roche, H. Quaintrell, Is Her X-1 Really strange? Astron Astrophys. 317, L25 (1997)

    ADS  Google Scholar 

  93. S. Bogdanov, C.D. Heinke, F. Özel, T. Güver, Neutron star mass-radius constraints of the quiescent low-mass X-Ray binaries X7 and X5 in the globular cluster 47 TUC. Astrophys. J. 831, 184 (2016)

    Article  ADS  Google Scholar 

  94. T. Güver and F. Özel, The mass and Radius of the Neutron Star in the Transient Low Mass X-Ray Binary SAX J1748.9-2021, Astrophys. J. Lett. 765 (2013) L1

  95. A. Drago, M. Moretti, G. Pagliara, The equation of state of dense matter: stiff, soft, or both? Astronomische Nachrichten 340, 189 (2019)

    Article  ADS  Google Scholar 

  96. D. Lazzati, Short duration gamma-ray burst and their outflows in light of GW170817, arXiv:2009.01773 [astro-ph.HE] (2020)

  97. E. Berger, Short-duration gamma-ray bursts. Ann. Rev. Astron. Astrophys. 52, 43 (2014)

    Article  ADS  Google Scholar 

  98. P. D’Avanzo, Short gamma-ray bursts: a review. J. High Energy Astrophys. 7, 73 (2015)

    Article  ADS  Google Scholar 

  99. S. Rosswog, The multi-messenger picture of compact binary mergers. Int. J. Mod. Phys. D 24, 1530012 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  100. Z. Dai, F. Daigue, P. Meszaros, The theory of gamma-ray bursts. Space Sci. Rev. 212, 409 (2017)

    Article  ADS  Google Scholar 

  101. K.P. Mooley, A.T. Deller, O. Gottlieb, E. Nakar, G. Hallinan, S. Bourke, D.A. Frail, A. Horesh, A. Corsi, K. Hotokezaka, Superluminal motion of a relativistic jet in the neutron star merger GW170817. Nature 561, 355 (2018)

    Article  ADS  Google Scholar 

  102. L.-X. Li, B. Paczynski, Transient events from neutron star mergers. Astrophys. J. Lett. 507, L59 (1998)

    Article  ADS  Google Scholar 

  103. M. Tanaka, Kilonova/Macronova emission from compact binary mergers, Adv. Astr., vol. 2016, 6341974

  104. Yu. Yun-wei, Review of Kilonova (Mergernova) Researchestwo. Chin. Astr. Astrophys. 43, 178 (2019)

    Article  ADS  Google Scholar 

  105. B.D. Metzger, Kilonovae. Liv. Rev. Rel. 23, 1 (2020)

    Article  Google Scholar 

  106. A. Bauswein, S. Goriely, H.-T. Janka, Systematics of dynamical mass ejection, nucleosynthesis, and radioactively powered electromagnetic signals from neutron-star mergers. Astrophys. J. 773, 78 (2013)

    Article  ADS  Google Scholar 

  107. R. Ciolfi, The key role of magnetic fields in binary neutron star mergers. Gen. Rel. Grav. 52, 59 (2020)

    Article  ADS  MATH  Google Scholar 

  108. R. Ciolfi, Binary neutron star mergers after GW170817. Frontiers Astron. Space Sci. 7, 27 (2020)

    Article  ADS  Google Scholar 

  109. R.J. Fries, V. Greco, P. Sorensen, Coalesce models for hadron formation from quark gluon plasma. Ann. Rev. Nucl. Part. Sci. 58, 177 (2008)

    Article  ADS  Google Scholar 

  110. T.W. Baumgarte, S.L. Shapiro, Numerical Relativity, Solving Einstein’s Equations on the Computer (Cambridge University Press, Cambridge, 2010)

    Book  MATH  Google Scholar 

  111. M. Shibata, Numerical Relativity (Word Scientific Publishing, Singapore, 2016)

    MATH  Google Scholar 

  112. E. Berti, V. Cardoso, A.O. Starinets, Quasinormal modes of black holes and black branes. Class. Quant. Grav. 26, 163001 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  113. M. Maggiore, Gravitational Waves, Volume 1, Theory and Experiments (Oxford University Press, Oxford, 2008)

    Google Scholar 

  114. https://www.gw-openscience.org/. Accessed 4 Feb 2017

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Cea.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cea, P. P-stars in the gravitational wave era. Eur. Phys. J. Plus 135, 891 (2020). https://doi.org/10.1140/epjp/s13360-020-00911-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00911-w

Navigation