Skip to main content

Advertisement

Log in

A competitive study on different operational models for MHD flow balancing and thermal management inside a fusion blanket manifold

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

This study mainly wants to find some possible strategies to achieve more MHD flow balancing and better thermal energy management through a LM (liquid metal) manifold. MHD flow and heat transfer are examined for six different EMC (electromagnetic coupling) models. EMC models are defined between the LM and the manifold walls based on the direction of the magnetic field and the electrical conductivities of the walls. A system of nonlinear differential equations with eleven unknowns in accordance with the prescribed boundary conditions is solved by a developed computer code. A thorough grid study is done for different EMC models. Some comparisons are done to represent the best EMC model for the effective LM manifold operation in terms of the uniformity of velocity and temperature distributions, pressure drop, the magnitude of flow imbalance, and the percentage of thermal energy extracted from the outlets. Obtained results finally identify the best EMC model that wins the competition and gives the most MHD flow and thermal balancing at the manifold outlets. In this model, the magnetic field is applied perpendicularly to the vertical walls and the manifold walls are wholly electric conducting.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

B :

Magnetic field vector (T)

B x , B y , B z :

Magnetic field components (T)

c p :

PbLi specific heat (J/kg-K)

c pw :

Walls specific heat (J/kg-K)

h :

Manifold height (m)

j :

Electric current density vector (A/m2)

j x , jy , j z :

Electric current density components (A/m2)

k :

PbLi thermal conductivity (W/m–K)

k w :

Walls thermal conductivity (W/m–K)

l 1 :

Supply channel length (m)

l 2 :

Expansion channel length (m)

l 3 :

Sub-channels length (m)

\(\dot{m}_{c}\) :

Mass flow rate at the central sub-channel outlet (kg/s)

\(\dot{m}_{l}\) :

Mass flow rate at the left sub-channel outlet (kg/s)

\(\dot{m}_{r}\) :

Mass flow rate at the right sub-channel outlet (kg/s)

p :

Pressure (Pa)

T :

PbLi temperature (K)

T 0 :

PbLi inlet temperature (K)

T w :

Walls temperature (K)

t w :

Walls thickness (m)

u 0 :

Inlet velocity (m/s)

V :

Velocity vector (m/s)

v x , v y , v z :

Velocity components (m/s)

w c :

Width of central sub-channel outlet (m)

w e :

Width of expansion channel (m)

w l :

Width of left sub-channel outlet (m)

w r :

Width of right sub-channel outlet (m)

w s :

Width of supply channel (m)

α :

Flow imbalance quantity

μ :

PbLi dynamic viscosity (Pa.s)

ρ :

PbLi density (kg/m3)

σ :

PbLi electrical conductivity (S/m)

σ w :

Walls electrical conductivity (S/m)

ϕ :

PbLi electrical potential (V)

ϕ w :

Walls electrical potential (V)

c :

Central

e :

Expansion

l :

Left

r :

Right

s :

Supply

w :

Wall

References

  1. M.H. Taheri, M. Abbasi, M.K. Jamei, Eur. Phys. J. Plus 134, 471 (2019)

    Article  Google Scholar 

  2. G.H. Lee, H.R. Kim, Nucl. Eng. Technol. 51, 654 (2019)

    Article  Google Scholar 

  3. S. Ghosh, S. Sarkar, R. Sivakumar, T.V.S. Sekhar, Numer. Heat Transf., Part A Appl. 76, 32 (2019)

    Article  ADS  Google Scholar 

  4. W.K. Hussam, K. Khanafer, H.J. Salem, G.J. Sheard, Int. Commun. Heat Mass Transf. 104, 127 (2019)

    Article  Google Scholar 

  5. J. Prakash et al., Eur. Phys. J. Plus 134, 81 (2019)

    Article  Google Scholar 

  6. M.H. Taheri, M. Abbasi, M.K. Jamei, Mech. Res. Commun. 99, 8 (2019)

    Article  Google Scholar 

  7. M.F. Shahri, A.H. Nezhad, Int. J. Appl. Electromagn. Mech. 49, 123 (2015)

    Article  Google Scholar 

  8. M.F. Shahri, A.H. Nezhad, Therm. Sci. 21, 889 (2017)

    Article  Google Scholar 

  9. M. Ferdows, F. Alzahrani, Int. Commun. Heat Mass Transf. 109, 104352 (2019)

    Article  Google Scholar 

  10. S. Gupta, D. Kumar, J. Singh, Int. J. Heat Mass Transf. 118, 378 (2018)

    Article  Google Scholar 

  11. S.M. Vahedi et al., Eur. Phys. J. Plus 134, 124 (2019)

    Article  Google Scholar 

  12. G.C. Shit, S. Mandal, Int. J. Appl. Comput. Math. 6, 1 (2019)

    Google Scholar 

  13. Z. Li et al., Eur. Phys. J. Plus 134, 77 (2019)

    Article  ADS  Google Scholar 

  14. D. Toghraie, Int. J. Appl. Electromagn. Mech. 1, 1 (2019)

    Google Scholar 

  15. M. Sheikholeslami, H.B. Rokni, Phys. Fluids 30, 012003 (2018)

    Article  ADS  Google Scholar 

  16. Y.Z. Sinzato, F.R. Cunha, Appl. Math. Model. 75, 572 (2019)

    Article  MathSciNet  Google Scholar 

  17. A.H. Nezhad, M.F. Shahri, J. Mech. 32, 749 (2016)

    Article  Google Scholar 

  18. M.F. Shahri, F. Sarhaddi, J. Mech. 34, 541 (2018)

    Article  Google Scholar 

  19. P.K. Yadav, S. Jaiswal, Can. J. Phys. 96, 1016 (2018)

    Article  ADS  Google Scholar 

  20. I.A. Belyaev et al., Tech. Phys. Lett. 45, 499 (2019)

    Article  ADS  Google Scholar 

  21. J. Zou, J. Zhao, C. Wei, Z. Liu, Fusion Eng. Des. 158, 111863 (2020)

    Article  Google Scholar 

  22. S.M. Seyyedi et al., Eur. Phys. J. Plus 134, 268 (2019)

    Article  Google Scholar 

  23. G.J. Reddy, M. Kumar, O.A. Beg, Phys. A: Stat. Mech. Appl. 510, 426 (2018)

    Article  Google Scholar 

  24. G. Nagaraju et al., J. Heat Transf. 141, 012004 (2018)

    Article  Google Scholar 

  25. M. Atashafrooz, H. Sajjadi, A.A. Delouei, Int. Commun. Heat Mass Transf. 110, 104411 (2020)

    Article  Google Scholar 

  26. Y.S. Wang et al., Int. Commun. Heat Mass Transf. 104, 15 (2019)

    Article  Google Scholar 

  27. J. Kwak, H.R. Kim, Nucl. Eng. Technol. 52, 1380 (2020)

    Article  Google Scholar 

  28. M. Sheikholeslami, H.B. Rokni, Chin. J. Phys. 55, 1352 (2017)

    Article  Google Scholar 

  29. M. Javed et al., Eur. Phys. J. Plus 134, 256 (2019)

    Article  Google Scholar 

  30. M. Sheikholeslami, H.B. Rokni, Chin. J. Phys. 55, 1115 (2017)

    Article  Google Scholar 

  31. L. Chen, M. Li, M. Ni, N. Zhang, Int. Commun. Heat Mass Transf. 84, 110 (2017)

    Article  Google Scholar 

  32. V. Klüber, L. Bühler, C. Mistrangelo, Fusion Eng. Des. 146, 684 (2019)

    Article  Google Scholar 

  33. M. Kumar et al., Fusion Eng. Des. 138, 1 (2019)

    Article  Google Scholar 

  34. A. Patel et al., Theor. Comput. Fluid Dyn. 32, 165 (2018)

    Article  MathSciNet  Google Scholar 

  35. H. Kumamaru, J. Nucl. Sci. Technol. 54, 1300 (2017)

    Article  Google Scholar 

  36. J. Feng, Q. He, H. Chen, M. Ye, Fusion Eng. Des. 109–111, 1360 (2016)

    Article  Google Scholar 

  37. Y. Wang, J. Mao, H. Wang, M. Jin, Fusion Eng. Des. 149, 111334 (2019)

    Article  Google Scholar 

  38. Q. He, J. Feng, H. Chen, Fusion Eng. Des. 109–111, 1313 (2016)

    Article  Google Scholar 

  39. Y. Luo, M. Zhu, C.N. Kim, J. Mech. Sci. Technol. 32, 647 (2018)

    Article  Google Scholar 

  40. Y. Luo, C.N. Kim, J. Mech. Sci. Technol. 31, 4813 (2017)

    Article  Google Scholar 

  41. S. Yang, C.N. Kim, Fusion Eng. Des. 122, 8 (2017)

    Article  Google Scholar 

  42. T.J. Rhodes, S. Smolentsev, M. Abdou, Fusion Eng. Des. 136, 847 (2018)

    Article  Google Scholar 

  43. C.N. Kim, Fusion Sci. Technol. 64, 787 (2013)

    Article  Google Scholar 

  44. Y. Luo, M. Wen, C.N. Kim, S. Yang, Fusion Eng. Des. 117, 63 (2017)

    Article  Google Scholar 

  45. C. Mistrangelo, L. Bühler, Fusion Eng. Des. 89, 1319 (2014)

    Article  Google Scholar 

  46. C.N. Kim, J. Mech. Sci. Technol. 28, 4959 (2014)

    Article  Google Scholar 

  47. K. Messadek, M. Abdou, Magnetohydrodynamics 45, 233 (2009)

    Article  Google Scholar 

  48. T.J. Rhodes, S. Smolentsev, M. Abdou, Phys. Fluids 30, 057101 (2018)

    Article  ADS  Google Scholar 

  49. H. Chen, Z. Meng, J. Feng, Q. He, Fusion Eng. Des. 89, 1406 (2014)

    Article  Google Scholar 

  50. M.F. Shahri, A.H. Nezhad, Int. J. Appl. Mech. 10, 185052 (2018)

    Article  Google Scholar 

  51. F. Moukalled, L. Mangani, M. Darwish, The Finite Volume Method in Computational Fluid Dynamics: An Advanced Introduction with OpenFOAM and Matlab, 1st edn. (Springer, Berlin, 2016)

    Book  MATH  Google Scholar 

  52. H. Versteeg, W. Malalasekera, An Introduction to Computational Fluid Dynamics: The Finite Volume Method, 2nd edn. (Pearson, London, 2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Hossein Nezhad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farahi Shahri, M., Hossein Nezhad, A. A competitive study on different operational models for MHD flow balancing and thermal management inside a fusion blanket manifold. Eur. Phys. J. Plus 136, 640 (2021). https://doi.org/10.1140/epjp/s13360-021-01631-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01631-5

Navigation