Skip to main content
Log in

An applicable surface heating in a two-phase ejector refrigeration

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Ejectors have been utilized in many industries such as steam power plants, nuclear reactors, desalination system, refrigeration, etc. However, due to the low coefficient of ejector performance, the ejector refrigeration systems are less used than the other methods (compression or absorption refrigeration systems). On the other hand, nucleated droplets in wet steam ejectors cause erosion/corrosion in the walls. In this research, the effects of surface heating on the ejector performance in the refrigeration system have been investigated. Flow simulation in the ejector is performed using Fluent software in two-phase mode. Then, by analyzing the outlet ejector parameters, the practical heat value is obtained. Criteria for investigating the effect of surface heating are entrainment ratio of the ejector, coefficient of performance of ejector refrigeration cycle, wetness, number of droplets, droplets radius, and entropy. The results show that the surface heating reduces the wetness and entrainment ratio at the end of the primary nozzle. In addition, an applicable value for surface heating has been obtained and a relatively good wetness reduction (0.81%) is achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

J :

Nucleation rate (m−3 s−1)

h :

Enthalpy (J kg−1)

k :

Turbulent dissipation rate (m2 s−3)

\({K}_{B}\) :

Boltzmann’s constant

M :

Mass of one molecule (mg)

\(\dot{m}\) :

Mass flow rate (kg s−1)

P :

Pressure (Pa)

\(Q\) :

Surface heating (Kw/m2)

\({q}_{c}\) :

Condensation coefficient (-)

r :

Radius of droplets (μm)

T :

Temperature (K)

u :

Velocity (m s−1)

X :

Spatial component (m)

COE:

Cost of electrical energy

COP:

Coefficient of performance

CR:

Compression ratio (−)

DAR:

Droplet Average Radius (μm)

ER:

Entrainment ratio (−)

ILE:

Entropy at the end of the primary nozzle

LND:

The average logarithm of the number of droplets

MOW:

Mean Wetness

α :

Thermal conductivity

β :

Liquid mass fraction (−)

Γ:

Mass generation rate (kg m−3 s−1)

\({\delta }_{ij}\) :

Rate of mixing layer growth

\(\varepsilon \) :

Turbulence dissipation (s−1)

η :

Number of liquid droplets (m−3)

μ :

Dynamic viscosity (Pa s)

\(\rho \) :

Density (kg m−3)

σ :

Liquid surface tension (N m−1)

eff:

Effective

evap:

Evaporator

d :

Discharge

Gen:

Generator

\(l\) :

Liquid

\(p\) :

Primary

\(s\) :

Secondary

\(v\) :

Gas (vapor)

References

  1. L.P. Lombard, J. Ortiz, C. Pout, A review on buildings energy consumption information. Energy Build. 40(3), 394–398 (2008)

    Article  Google Scholar 

  2. J. Gagan, K. Śmierciew, M. Lukaszuk, D. Butrymowicz, Investigations of thermal performance of ejection refrigeration system driven by low grade heat. Appl. Therm. Eng. 130, 1121–1138 (2018)

    Article  Google Scholar 

  3. M. Isaac, D.P. van Vuuren, Modeling global residential sector energy demand for heating and air conditioning in the context of climate change. Energy Policy 37(2), 507–521 (2009)

    Article  Google Scholar 

  4. S. He, Y. Li, R.Z. Wang, Progress of mathematical modeling on ejectors. Renew. Sustain. Energy Rev. 13, 1760–1780 (2009)

    Article  Google Scholar 

  5. M. Bencharifa, H. Nesreddineb, S. Croquer, P. Sébastien, P. SaidZida, The benefit of droplet injection on the performance of an ejector refrigeration cycle working with R245fa. Int. J. Refrig. 113, 276–287 (2020)

    Article  Google Scholar 

  6. F. Foroozesh, A.B. Khoshnevis, E. Lakzian, Improvement of the wet steam ejector performance in a refrigeration cycle via changing the ejector geometry by a novel EEC (Entropy generation, Entrainment ratio, and Coefficient of performance) method. Int. J. Refrig. 110, 248–261 (2020)

    Article  Google Scholar 

  7. J.A. Expósito, F.J. Sanches de la Flor, J. Salmerón, Single-Phase Ejector geometry optimization by means of a multi-Objective evolutionary algorithm and a surrogate CFD model. Energy 164(1), 46–64 (2018)

    Article  Google Scholar 

  8. V. Van Nguyen, S. Varga, J. Soares, V. Dvorak, A.C. Oliveira, Applying a variable geometry ejector in a solar ejector refrigeration system. Int. J. Refrig. 113, 187–195 (2020)

    Article  Google Scholar 

  9. G. Zhang, S. Dykas, S. Yang, X. Zhang, H. Li, J. Wang, Optimization of the primary nozzle based on a modified condensation model in a steam ejector. Appl. Therm. Eng. 171, 115090 (2020)

    Article  Google Scholar 

  10. M. Palacz, J. Smolka, W. Kus, A. Fic, Z. Bulinski, A.J. Nowak, K. Banasiak, A. Hafner, CFD-based shape optimization of a CO2 two-phase ejector mixing section. Appl. Therm. Eng. 95, 62–69 (2016)

    Article  Google Scholar 

  11. J. Yan, S. Li, Z. Liu, Numerical investigation on optimization of ejector primary nozzle geometries with fixed/varied nozzle exit position. Appl. Therm. Eng 175, 115426 (2020)

    Article  Google Scholar 

  12. F. Aligolzadeh, A. Hakkaki-Fard, A novel methodology for designing a multi-ejector refrigeration system. Appl. Therm. Eng. 151, 26–37 (2019)

    Article  Google Scholar 

  13. D. Jingming, Q. Hu, Y. Mengqi, H. Zhitao, C. Wenbin, D. Liang, M. Hongbin, P. Xinxiang, Numerical investigation on the influence of mixing chamber length on steam ejector performance. Appl. Therm. Eng. 174, 115204 (2020)

    Article  Google Scholar 

  14. M.S. Lee, H. Lee, Y.H.R. Radermacher, H.M. Jeong, Optimization of two-phase R600a ejector geometries using a non-equilibrium CFD model. Appl. Therm. Eng. 109, 272–282 (2016)

    Article  Google Scholar 

  15. Y. Yang, N. Karvounis, J.H. Walther, H. Ding, C. Wen, Effect of area ratio of the primary nozzle on steam ejector performance considering no equilibrium condensations. Energy 237, 121483 (2021)

    Article  Google Scholar 

  16. W. Sun, X. Ma, Y. Zhang, L. Jia, H. Xue, Performance analysis and optimization of a steam ejector through streamlining of the primary nozzle. Case Stud. Therm. Eng. 27, 101356 (2021)

    Article  Google Scholar 

  17. S. Li, Y. Liu, Y. Liu, J. Zhang, Performance comparison of ejectors in ejector-based refrigeration cycles with R1234yf, R1234ze(E) and R134a. Environ. Sci. Pollut. Res. Int. 28–40, 57166–57182 (2021)

    Article  Google Scholar 

  18. X. Feng, Z. Zhang, J. Yang, D. Tian, Numerical Study on Two-Phase Flow of Trans critical CO2 in Ejector. Springer Nature 11, 385–393 (2020)

    Google Scholar 

  19. X. Wang, H. Li, J. Dong, Numerical study on mixing flow behavior in gas-liquid ejector. Exp. Comput. Multiph. Flow 3, 108–112 (2021)

    Article  Google Scholar 

  20. Y. Zhang, J. Zhao, Z. Liu, Numerical simulation and parameter study of ejector in casing gas recovery system. J. Mech. Sci. Technol. 35, 2689–2696 (2021)

    Article  Google Scholar 

  21. M.A. Faghih Aliabadi, E. Lakzian, A. Jahangiri, I. Khazaei, Numerical investigation of effects polydispersed droplets on the erosion rate and condensation loss in the wet steam flow in the turbine blade cascade. Appl. Therm. Eng. 164, 114478 (2020)

    Article  Google Scholar 

  22. M. Vatanmakan, E. Lakzian, M.R. Mahpeykar, Investigating the entropy generation in condensing steam flow in turbine blades with volumetric heating. Energy 147, 701–714 (2018)

    Article  Google Scholar 

  23. M. Atmaca, C. Ezgi, Three-dimensional CFD modeling of a steam ejector. Energy Sources Part A Recovery Util. Environ. Eff. (2019). https://doi.org/10.1080/15567036.2019.1649326

    Article  Google Scholar 

  24. I. Zine, K. Ameur, M. Falsafioon, M. Badache, Current advances in ejector modeling, experimentation and applications for refrigeration and heat pumps. Part 2 two-phase ejectors. Inventions 4, 1–16 (2019)

    Google Scholar 

  25. G. Besagni, R. Mereu, F. Inzoli, Ejector refrigeration: a comprehensive review. Renew. Sust. Energy Rev. 53, 373–407 (2016)

    Article  Google Scholar 

  26. N. Sharifi, M. Boroomand, M. Sharifi, Numerical, assessment of steam nucleation on thermodynamic performance of steam ejectors. Appl. Therm. Eng. 52, 449–459 (2013)

    Article  Google Scholar 

  27. N. Ruangtrakoon, S. Aphornratana, T. Sriveerakul, Experimental studies of a steam jet refrigeration cycle: effect of the primary nozzle geometries to system performance. Exp. Therm. Fluid Sci. 35, 676–683 (2011)

    Article  Google Scholar 

  28. M.J. Moore, P.T. Walters, R.I. Crane, B.J. Davidson, Predicting the fog drop size in wet steam turbines. Wet Steam 4, 101–109 (1973)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esmail Lakzian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahvard, A.J., Lakzian, E., Foroozesh, F. et al. An applicable surface heating in a two-phase ejector refrigeration. Eur. Phys. J. Plus 137, 179 (2022). https://doi.org/10.1140/epjp/s13360-021-02203-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-02203-3

Navigation