Skip to main content
Log in

All-optical analog to electromagnetically induced transparency based on higher-order topological states

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this paper, we investigate a topologically nontrivial kagome lattice and some special higher-order corner states, which originate from next-nearest-neighbor interactions and evolve from the edge states, so that the coupling between these new corner states is more easily to be tuned in contrast to the conventional “zero-energy” corner state. By introducing this topologically nontrivial kagome lattice with a zigzag perfect-electric-conductor boundary into a conventional photonic crystal waveguide system, and using a simple method to precisely control the coupling between the corner states and the waveguide, an all-optical analog of electromagnetically induced transparency with topological protection is achieved for the first time, to the best of our knowledge. These results may expand our understanding of the higher-order corner modes in a more general framework, and find applications in the fields of light delay, narrowband filter, and on-chip optical signal processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: Data underlying the results presented in this paper may be obtained from the authors upon reasonable request.]

References

  1. J.-W. Dong, X.-D. Chen, H. Zhu, Y. Wang, X. Zhang, Valley photonic crystals for control of spin and topology. Nat. Mater. 16(3), 298–302 (2017)

    Article  ADS  Google Scholar 

  2. L.-H. Wu, X. Hu, Scheme for achieving a topological photonic crystal by using dielectric material. Phys. Rev. Lett. 114(22), 223901 (2015)

    Article  ADS  Google Scholar 

  3. F. Alpeggiani, L. Kuipers, Topological edge states in bichromatic photonic crystals. Optica 6(1), 96–103 (2019)

    Article  ADS  Google Scholar 

  4. Z. Wang, Y.D. Chong, J.D. Joannopoulos, M. Soljačić, Reflection-free one-way edge modes in a gyromagnetic photonic crystal. Phys. Rev. Lett. 100(1), 013905 (2008)

    Article  ADS  Google Scholar 

  5. W.-J. Chen, Z.H. Hang, J.-W. Dong, X. Xiao, H.-Z. Wang, C.T. Chan, Observation of backscattering-immune chiral electromagnetic modes without time reversal breaking. Phys. Rev. Lett. 107(2), 023901 (2011)

    Article  ADS  Google Scholar 

  6. B. Bahari, A. Ndao, F. Vallini, A. El Amili, Y. Fainman, B. Kanté, Nonreciprocal lasing in topological cavities of arbitrary geometries. Science 358(6363), 636–639 (2017)

    Article  ADS  Google Scholar 

  7. M.A. Bandres, S. Wittek, G. Harari, M. Parto, J. Ren, M. Segev, D.N. Christodoulides, M. Khajavikhan, Topological insulator laser: experiments. Science 359(6381), 1231 (2018)

    Article  Google Scholar 

  8. H. Zhong, Y.V. Kartashov, A. Szameit, Y. Li, C. Liu, Y. Zhang, Theory of topological corner state laser in Kagome waveguide arrays. APL Photon. 6, 040802 (2021)

    Article  ADS  Google Scholar 

  9. A.E. Hassan, F.K. Kunst, A. Moritz, G. Andler, E.J. Bergholtz, M. Bourennane, Corner states of light in photonic waveguides. Nat. Photonics 13(10), 697–700 (2019)

    Article  ADS  Google Scholar 

  10. B.-Y. Xie, G.-X. Su, H.-F. Wang, H. Su, X.-P. Shen, P. Zhan, M.-H. Lu, Z.-L. Wang, Y.-F. Chen, Visualization of higher-order topological insulating phases in two-dimensional dielectric photonic crystals. Phys. Rev. Lett. 122(23), 233903 (2019)

    Article  ADS  Google Scholar 

  11. X.-D. Chen, W.-M. Deng, F.-L. Shi, F.-L. Zhao, M. Chen, J.-W. Dong, Direct observation of corner states in second-order topological photonic crystal slabs. Phys. Rev. Lett. 122(23), 233902 (2019)

    Article  ADS  Google Scholar 

  12. M. Ezawa, Higher-order topological insulators and semimetals on the breathing kagome and pyrochlore lattices. Phys. Rev. Lett. 120(2), 026801 (2018)

    Article  ADS  Google Scholar 

  13. C.W. Peterson, W.A. Benalcazar, T.L. Hughes, G. Bahl, A quantized microwave quadrupole insulator with topologically protected corner states. Nature 555, 346–350 (2018)

    Article  ADS  Google Scholar 

  14. M. Serra-Garcia, V. Peri, R. Susstrunk, O.R. Bilal, T. Larsen, L.G. Villanueva, S.D. Huber, Observation of a phononic quadrupole topological insulator. Nature 555, 342–345 (2018)

    Article  ADS  Google Scholar 

  15. Y. Ota, F. Liu, R. Katsumi, K. Watanabe, K. Wakabayashi, Y. Arakawa, S. Iwamoto, Photonic crystal nanocavity based on a topological corner state. Optica 6(6), 786–789 (2019)

    Article  ADS  Google Scholar 

  16. X. Ni, M. Weiner, A. Alù, A.B. Khanikaev, Observation of higher-order topological acoustic states protected by generalized chiral symmetry. Nat. Mater. 18(2), 113–120 (2019)

    Article  Google Scholar 

  17. Y. Chen, X. Lu, H. Chen, Effect of truncation on photonic corner states in a Kagome lattice. Opt. Lett. 44(17), 4251–4254 (2019)

    Article  ADS  Google Scholar 

  18. C. Liu, Z. Dutton, C.H. Behroozi, L.V. Hau, Observation of coherent optical information storage in an atomic medium using halted light pulses. Nature 409, 490–493 (2001)

    Article  ADS  Google Scholar 

  19. C. Sayrin, C. Clausen, B. Albrecht, P. Schneeweiss, A. Rauschenbeutel, Storage of fiber-guided light in a nanofiber trapped ensemble of cold atoms. Optica 2(4), 353–356 (2015)

    Article  ADS  Google Scholar 

  20. Q. Xu, P. Dong, M. Lipson, Breaking the delay-bandwidth limit in a photonic structure. Nat. Phys. 3(6), 406 (2007)

    Article  Google Scholar 

  21. K. Otsuka, N. Kobayashi, M. Tomita, Slow light in coupled-resonator-induced transparency. Phys. Rev. Lett. 98(21), 213904 (2007)

    Article  ADS  Google Scholar 

  22. C. Hu, S.A. Schulz, A.A. Liles, L. O’Faolain, Tunable optical buffer through an analogue to electromagnetically induced transparency in coupled photonic crystal cavities. ACS Photon. 5(5), 1827–1832 (2018)

    Article  Google Scholar 

  23. Z.-M. Xu, C. Li, J.-F. Wu, Dynamic trapping and releasing photonics beyond delay-bandwidth limit in cascaded photonic crystal nanocavities. New J. Phys. 22, 063030 (2020)

    Article  ADS  Google Scholar 

  24. S. King, D. Vanderbilt, Theory of polarization of crystalline solids. Phys. Rev. B 47(3), 1651–1654 (1993)

    Article  ADS  Google Scholar 

  25. R. Resta, Macroscopic polarization in crystalline dielectrics: the geometric phase approach. Rev. Mod. Phys. 66(3), 899–915 (1994)

    Article  ADS  Google Scholar 

  26. H. Xue, Y. Yang, F. Gao, Y. Chong, B. Zhang, Acoustic higher-order topological insulator on a kagome lattice. Nat. Mater. 18(2), 108–112 (2019)

    Article  Google Scholar 

  27. M. Li, D. Zhirihin, M. Gorlach, X. Ni, D. Filonov, A. Slobozhanyuk, A. Alù, A.B. Khanikaev, Higher-order topological states in photonic kagome crystals with long-range interactions. Nat. Photon. 14(2), 89–94 (2020)

    Article  ADS  Google Scholar 

  28. S. Fan, W. Suh, J.D. Joannopoulos, Temporal coupled-mode theory for the Fano resonance in optical resonators. J. Opt. Soc. Am. A 20(3), 569–572 (2003)

    Article  ADS  Google Scholar 

  29. C. Li, M. Wang, J.-F. Wu, Broad-bandwidth, reversible, and high-contrast-ratio optical diode. Opt. Lett. 42(2), 334–337 (2017)

    Article  ADS  Google Scholar 

  30. C. Zheng, X. Jiang, S. Hua, L. Chang, G. Li, H. Fan, M. Xiao, Controllable optical analog to electromagnetically induced transparency in coupled high-Q microtoroid cavities. Opt. Express 20(16), 18319–18325 (2012)

    Article  ADS  Google Scholar 

  31. F. Xia, L. Sekaric, Y. Vlasov, Ultracompact optical buffers on a silicon chip. Nat. Photon. 1(1), 65–71 (2007)

    Article  ADS  Google Scholar 

  32. S.A. Schulz, L. O’Faolain, D.M. Beggs, T.P. White, A. Melloni, T.F. Krauss, Dispersion engineered slow light in photonic crystals: a comparison. J. Opt. 12(10), 104004 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China (11774098); Guangdong Natural Science Foundation (2017A030313016); Science and Technology Program of Guangzhou (202002030500).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun-Fang Wu or Chao Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, SL., Li, JL., Wu, JF. et al. All-optical analog to electromagnetically induced transparency based on higher-order topological states. Eur. Phys. J. Plus 137, 97 (2022). https://doi.org/10.1140/epjp/s13360-021-02313-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-02313-y

Navigation