Skip to main content
Log in

Analysis of growth mechanisms and microstructure evolution of Pb+2 minor concentrations by electrodeposition technique

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this study, the electrodeposition technique has been used to deposit low concentrations of highly toxic lead (Pb) cations into a solution of nitrate at a constant potential of − 1 V on fluorine-doped tin oxide electrodes (FTO). Monitoring of the reaction was conducted with the assistance of a computerized potentiostat/galvanostat setup, in cyclic voltammetry and in situ chronoamperometry modemodes. X-ray diffraction, scanning electron microscopy, energy-dispersive X-Ray, and ultraviolet–visible spectroscopy techniques were used to examine the crystal structure, morphology, and optical properties of the lead deposits, respectively. Pb regular micro-hexagons have been identified; their size and density were significantly influenced by the cationic precursor’s concentration. The correlation between the morphological and crystallographical structures of the electrodeposits was discussed. Based on chronoamperometric measurements, a mechanism for the growth of Pb deposits on FTO substrate has been proposed. Based on the reported results, electrodeposition processes of low heavy metals concentrations in contaminated water could be optimized using the eco-friendly electrodeposition technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

This manuscript has associated data in a data repository. [Authors’ comment: All data generated or analysed during this study are included in this published article [and its supplementary information files.]]

References

  1. T. Thompson, J. Fawell, S. Kunikane, D. Jackson, S. Appleyard, P. Callan, J. Bartram, P. Kingston, S. Water, World Health Organization, Chemical safety of drinking water: assessing priorities for risk management (World Health Organization, Geneva, 2007)

    Google Scholar 

  2. L. Wang, Dual-functional lead (II) metal-organic framework based on 5-Aminonicotinic acid as a luminescent sensor for selective sensing of nitroaromatic compounds and detecting the temperature. J. Inorg. Organomet. Polym. Mater. 30, 291–298 (2019)

    Article  Google Scholar 

  3. National Research Council and Safe Drinking Water Committee, An Evaluation of Activated Carbon for Drinking Water Treatment, Drinking water and health: volume 2, (National Academies Press (US), 1980). https://doi.org/10.17226/1904

  4. E.A. Abdelrahman, R.M. Hegazey, A. Alharbi, Facile synthesis of mordenite nanoparticles for efficient removal of Pb(II) ions from aqueous media. J. Inorg. Organomet. Polym. Mater. 30, 1369–1383 (2019)

    Article  Google Scholar 

  5. N.T. Moja, S.B. Mishra, S.S. Hwang, T.Y. Tsai, A.K. Mishra, Coordination of Lead (II) and Cadmium (II) Ions to Nylon 6/Flax Linum composite as a route of removal of heavy metals. J. Inorg. Organomet. Polym. Mater. (2021). https://doi.org/10.1007/S10904-021-02052-8

    Article  Google Scholar 

  6. M. Szklarczyk, J.O.M. Bockris, In situ STM studies of lead electrodeposition on graphite substrate. J. Electrochem. Soc. 137, 452–457 (1990)

    Article  ADS  Google Scholar 

  7. W. Zerguine, D. Abdi, F. Habelhames, M. Lakhdari, H. Derbal-Habak, Y. Bonnassieux, D. Tondelier, J. Choi, J.M. Nunzi, Annealing effect on the optical and photoelectrochemical properties of lead oxide. Eur. Phys. J. Appl. Phys. 84, 30301 (2018)

    Article  ADS  Google Scholar 

  8. T. Ishiyama, K.-I. Abe, T. Tanaka, A. Mizuike, Determination of trace lead in copper by cathodic stripping voltammetry. Anal. Sci. 12, 263–265 (1996)

    Article  Google Scholar 

  9. S. Prakash, V.K. Shahi, Improved sensitive detection of Pb 2+ and Cd 2+ in water samples at electrodeposited silver nanonuts on a glassy carbon electrode. Anal. Methods 3, 2134–2139 (2011)

    Article  Google Scholar 

  10. N. Nikolić, P.M. Zivkovic, S. Stevanović, G. Brankovic, Relationship between the kinetic parameters and morphology of electrochemically deposited lead. J. Serb. Chem. Soc. 81, 553–566 (2016)

    Article  Google Scholar 

  11. L. Meng, J. Ustarroz, M.E. Newton, J.V. Macpherson, Elucidating the cathodic electrodeposition mechanism of lead/lead oxide formation in nitrate solutions. J. Phys. Chem. C 121(12), 6835–6843 (2017)

    Article  Google Scholar 

  12. C.-J. Yang, Xu. Lv-xing Zhao, D.-C. Zhang, Gu. Yu, Insight into oxidation of lead powder during electrodeposition. Prot. Met. Phys. Chem. Surf. 56(2), 302–310 (2020)

    Article  Google Scholar 

  13. V.I. Pryakhina, E.V. Gunina, B.I. Lisjikh, M.A. Osipova, E.D. Greshnyakov, E.V. Shishkina, V. Ya Shur, in Shapes Change of PbO Nanoparticles Produced by Laser Ablation in Liquid. IOP Conference Series: Materials Science and Engineering vol: 699, no. 1 (2019) pp. 012038

  14. Smart, Clarence F. Electrodeposition of lead and lead alloys. United States US2751341A, filed 22 September 1952, and issued 19 June 1956. https://patents.google.com/patent/US2751341A/en.

  15. N.A. Pangarov, The crystal orientation of electrodeposited metals. Electrochim. Acta 7(1), 139–146 (1962)

    Article  Google Scholar 

  16. M.A.M. Ibrahim, M.A. Amin, M.A. Abbass, Electrodeposition of lead from acetate electrolyte containing additives. Trans. IMF 82, 87–92 (2004). https://doi.org/10.1080/00202967.2004.11871567

    Article  Google Scholar 

  17. M. Girgis, E. Ghali, Effect of temperature on cyclic voltammograms during the electrodeposition of lead. Can. J. Chem. 67(1), 130–136 (1989)

    Article  Google Scholar 

  18. V. Protsenko, E. Eva, F. Danilov, Electrodeposition of lead coatings from a methanesulphonate electrolyte. J. Chem. Technol. Metall. 50, 39–43 (2015)

    Google Scholar 

  19. M. Khelladi, L. Mentar, M. Boubatra, A. Azizi, A. Kahoul, Early stages of cobalt electrodeposition on FTO and n-type Si substrates in sulfate medium. Mater. Chem. Phys. 122, 449–453 (2010)

    Article  Google Scholar 

  20. Z. Banyamin, P. Kelly, G. West, J. Boardman, Electrical and optical properties of fluorine doped tin oxide thin films prepared by magnetron sputtering. Coatings 4, 732–746 (2014)

    Article  Google Scholar 

  21. A. Ray, Electrodeposition of thin films for low-cost solar cells, electroplating of nanostructures. IntechOpen (2015). https://doi.org/10.5772/61456

  22. J. González-García, J. Iniesta, A. Aldaz, V. Montiel, Effects of ultrasound on the electrodeposition of lead dioxide on glassy carbon electrodes. New J. Chem. 22, 343–349 (1998)

    Article  Google Scholar 

  23. J. González-García, J. Iniesta, E. Expósito, V. García-García, V. Montiel, A. Aldaz, Early stages of lead dioxide electrodeposition on rough titanium. Thin Solid Films 352, 49–56 (1999)

    Article  ADS  Google Scholar 

  24. J. González-García, F. Gallud, J. Iniesta, V. Montiel, A. Aldaz, A. Lasia, Kinetics of electrocrystallisation of PbO2 on glassy carbon electrodes: influence of ultrasound. New J. Chem. 25, 1195–1198 (2001)

    Article  Google Scholar 

  25. J. González-García, F. Gallud, J. Iniesta, M. Montiel, A. Aldaz, A. Lasia, Kinetics of electrocrystallization of PbO2 on glassy carbon electrodes. Influence of the electrode rotation. Electroanalysis 13, 1258–1264 (2001)

    Article  Google Scholar 

  26. I. Shtepliuk, M. Vagin, I.G. Ivanov, T. Iakimov, G.R. Yazdi, R. Yakimova, Lead (Pb) interfacing with epitaxial graphene. Phys. Chem. Chem. Phys. 20, 17105–17116 (2018)

    Article  Google Scholar 

  27. V. Sáez, J. González-Garcı́a, J. Iniesta, A. Frı́as-Ferrer, A. Aldaz, Electrodeposition of PbO2 on glassy carbon electrodes: influence of ultrasound frequency. Electrochem. Commun. 6, 757–761 (2004)

    Article  Google Scholar 

  28. I. Massoudi, A. Rebey, Analysis of in situ thin films epitaxy by reflectance spectroscopy: effect of growth parameters. Superlattices Microstruct. 131, 66–85 (2019)

    Article  ADS  Google Scholar 

  29. O. Oda, Compound semiconductor bulk materials and characterizations. (World Scientific, 2007). https://doi.org/10.1142/2323

  30. W.S. Werner, K. Glantschnig, C. Ambrosch-Draxl, Optical constants and inelastic electron-scattering data for 17 elemental metals. J. Phys. Chem. Ref. Data 38, 1013–1092 (2009)

    Article  ADS  Google Scholar 

  31. H. Yang, R.G. Reddy, Fundamental studies on electrochemical deposition of lead from lead oxide in 2: 1 urea/choline chloride ionic liquid. J. Electrochem. Soc. 161, D586 (2014)

    Article  Google Scholar 

  32. N. Sugumaran, P. Everill, S.W. Swogger, D.P. Dubey, Lead acid battery performance and cycle life increased through addition of discrete carbon nanotubes to both electrodes. J. Power Sources 279, 281–293 (2015)

    Article  ADS  Google Scholar 

  33. N.D. Nikolić, V.M. Maksimović, G. Branković, Morphological and crystallographic characteristics of electrodeposited lead from a concentrated electrolyte. RSC Adv. 3, 7466–7471 (2013)

    Article  ADS  Google Scholar 

  34. C.-Z. Yao, M. Liu, P. Zhang, X.-H. He, G.-R. Li, W.-X. Zhao, P. Liu, Y.-X. Tong, Tuning the architectures of lead deposits on metal substrates by electrodeposition. Electrochim. Acta 54, 247–253 (2008)

    Article  Google Scholar 

  35. J. Matthews, Accommodation of misfit across the interface between single-crystal films of various face-centred cubic metals. Philos. Mag. 13, 1207–1221 (1966)

    Article  ADS  Google Scholar 

  36. G. Arrhenius, X-ray diffraction procedures for polycrystalline and amorphous materials. vol: 228 (ACS Publications, 1955)

  37. S.S. Djokić, Electrodeposition and surface finishing (Springer, New York, 2014)

    Book  Google Scholar 

  38. K.I. Popov, E.R. Stojilković, V. Radmilović, M.G. Pavlović, Morphology of lead dendrites electrodeposited by square-wave pulsating overpotential. Powder Technol. 93, 55–61 (1997)

    Article  Google Scholar 

  39. N.D. Nikolić, K.I. Popov, E.R. Ivanović, G. Branković, S.I. Stevanović, P.M. Živković, Thepotentiostatic current transients and the role of local diffusion fields in formation of the 2D lead dendrites from the concentrated electrolyte. J. Electroanal. Chem. 739, 137–148 (2015)

    Article  Google Scholar 

  40. S. Cherevko, X. Xing, C.H. Chung, Hydrogen template assisted electrodeposition of sub-micrometer wires composing honeycomb-like porous Pb films. Appl. Surf. Sci. 257, 8054–8061 (2011)

    Article  ADS  Google Scholar 

  41. N.D. Nikolic, K.I. Popov, P.M. Zivkovic, G. Brankovic, A new insight into the mechanism of lead electrodeposition: ohmic-diffusion control of the electrodeposition process. J. Electroanal. Chem. 691, 66–76 (2013)

    Article  Google Scholar 

  42. A. Rajamani, U.B.R. Ragula, N. Kothurkar, M. Rangarajan, Nano-and micro-hexagons of bismuth on polycrystalline copper: electrodeposition and heavy metal sensing. Cryst Eng Comm. 16, 2032–2038 (2014)

    Article  Google Scholar 

  43. S. Gupta, R. Singh, M. Anoop, V. Kulshrestha, D.N. Srivastava, K. Ray, S. Kothari, K. Awasthi, M. Kumar, Electrochemical sensor for detection of mercury (II) ions in water using nanostructured bismuth hexagons. Appl. Phys. A 124, 737 (2018)

    Article  ADS  Google Scholar 

  44. A. Zimmer, L. Broch, C. Boulanger, N. Stein, Morphological and chemical dynamics upon electrochemical cyclic sodiation of electrochromic tungsten oxide coatings extracted by in situ ellipsometry. Electrochim. Acta 174, 376–383 (2015)

    Article  Google Scholar 

  45. M. Paunovic, M. Schlesinger, Fundamentals of electrochemical deposition (John Wiley & Sons Inc, Hoboken, 2005)

    Google Scholar 

  46. Y. Katayama, R. Fukui, T. Miura, Electrodeposition of lead from 1-butyl-1-methylpyrrolidinium Bis(trifluoromethylsulfonyl) amide ionic liquid. J. Electrochem. Soc. 160, D251–D255 (2013)

    Article  Google Scholar 

  47. A. Liu, Z. Shi, R.G. Reddy, Electrodeposition of Pb from PbO in urea and 1-butyl-3-methylimidazolium chloride deep eutectic solutions. Electrochim. Acta 251, 176–186 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Qassim University, represented by Deanship of scientific “Research, on the financial support for this research under the number (10130-cos-2020-1-3-I) during the academic year 1442AH/2020AD”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Rebey.

Additional information

Ahmed Rebey is the scientific name, but the official name is Hamad AlHadi Rebei. The author is known by the name A. Rebey in Scopus, Google Scholar and ResarchGate.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rebey, A., Hamdi, R. & Hammami, B. Analysis of growth mechanisms and microstructure evolution of Pb+2 minor concentrations by electrodeposition technique. Eur. Phys. J. Plus 137, 295 (2022). https://doi.org/10.1140/epjp/s13360-022-02345-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-02345-y

Navigation