Skip to main content

Advertisement

Log in

Thermal management of carbon-based dental laminate via additives carbon nanotube and hydroxyapatite in a vessel micro-flow based on the numerical/empirical data

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Microfluidics points to the manner of fluids at micro- and nano-scales levels. This research aims to find the heat transfer rate of hydroxyapatite bio-ceramic and its composite (HA/carbon nanotube) to find the optimized volume fraction for the human blood plasma through the vessel micro-flow. It can also be used in the teeth reach extreme temperatures, causing the tooth thermal pain. To find the answer, the body condition through time was considered. Thus, simulated body fluid, which acts as an adhesive to bond artificial materials to living bones, was chosen as the solution close to mouth-environment. Hydroxyapatite is a ceramic-based material which has bioactivity and biocompatibility. However, carbon nanotube, which is a carbon-based material, has high tensile strength and stiffness, that could likely be utilized to reinforce hydroxyapatite. The results showed that heat transfer rate for hydroxyapatite bio-ceramic dispersed in simulated body fluid solution in 1, 14 and 28 days, decreased − 14.8785%, − 15.4279% and − 17.4450%, respectively; thus, time effect was 2.5965%. Also, heat transfer rate for HA/carbon nanotube dispersed in simulated body fluid solution in 1, 14 and 28 days enhanced 25.1189%, 25.6410% and 25.7923%, respectively; thus, time effect was 0.6734%. This study proved that time can affect the heat transfer rate in simulated body fluid solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: All data included in this manuscript are available upon request by contacting with the corresponding author.]

References

  1. R.B. Ganvir, P.V. Walke, V.M. Kriplani, Heat transfer characteristics in nanofluid—a review. Renew. Sustain. Energy Rev. 75, 451–460 (2017). https://doi.org/10.1016/j.rser.2016.11.010

    Article  Google Scholar 

  2. R. Lenin, P.A. Joy, C. Bera, A review of the recent progress on thermal conductivity of nanofluid. J. Mol. Liq. (2021). https://doi.org/10.1016/j.molliq.2021.116929

    Article  Google Scholar 

  3. S. Chakraborty, P.K. Panigrahi, Stability of nanofluid: a review. Appl. Therm. Eng. 174, 115259 (2020). https://doi.org/10.1016/j.applthermaleng.2020.115259

    Article  Google Scholar 

  4. M. Ibrahim, T. Saeed, Y.M. Chu, H.M. Ali, G. Cheraghian, R. Kalbasi, Comprehensive study concerned graphene nano-sheets dispersed in ethylene glycol: experimental study and theoretical prediction of thermal conductivity. Powder Technol. 386, 51–59 (2021). https://doi.org/10.1016/j.powtec.2021.03.028

    Article  Google Scholar 

  5. A. Moradikazerouni, K. Shoele, Computational study of Rayleigh-Bernard convection in a cylindrical pressurized cryogenic tank. Bull. Am. Phys. Soc. (2021)

  6. S. Rostami, S. Aghakhani, A. Hajatzadeh Pordanjani, M. Afrand, G. Cheraghian, H.F. Oztop, M.S. Shadloo, A review on the control parameters of natural convection in different shaped cavities with and without nanofluid. Processes 8(9), 1011 (2020). https://doi.org/10.3390/pr8091011

    Article  Google Scholar 

  7. C. Estebe, Y. Liu, M. Vahab, M. Sussman, A. Moradikazerouni, K. Shoele, W. Guo, A low mach number, adaptive mesh method for simulating multi-phase flows in cryogenic fuel tanks

  8. A.H. Pordanjani, S. Aghakhani, M. Afrand, M. Sharifpur, J.P. Meyer, H. Xu, H.M. Ali, N. Karimi, G. Cheraghian, Nanofluids: physical phenomena, applications in thermal systems and the environment effects-a critical review. J. Clean. Prod. (2021). https://doi.org/10.1016/j.jclepro.2021.128573

    Article  Google Scholar 

  9. A. Moradikazerouni, M. Vahab, K. Shoele, A 0D/3D nodal-CFD method of cylindrical pressurized tanks. In APS Division of Fluid Dynamics Meeting Abstracts, pp. T01–014 (2020)

  10. G. Cheraghian, Improved heavy oil recovery by nanofluid surfactant flooding-an experimental study. In 78th EAGE conference and exhibition 2016, vol. 2016, no. 1, pp. 1–5. European Association of Geoscientists & Engineers (2016). https://doi.org/10.3997/2214-4609.201601509

  11. Y. Giannareas, K. Shoele, Surveillant and hydrodynamic benefits of fish schooling. Bulletin of the American Physical Society (2021)

  12. K.H. Almitani, N.H. Abu-Hamdeh, S. Etedali, A. Abdollahi, A.S. Goldanlou, A. Golmohammadzadeh, Effects of surfactant on thermal conductivity of aqueous silica nanofluids. J. Mol. Liq. 327, 114883 (2021). https://doi.org/10.1016/j.molliq.2020.114883

    Article  Google Scholar 

  13. T. Kokubo, S. Yamaguchi, Simulated body fluid and the novel bioactive materials derived from it. J. Biomed. Mater. Res., Part A 107(5), 968–977 (2019). https://doi.org/10.1002/jbm.a.36620

    Article  Google Scholar 

  14. D.S. Gomes, A.M. Santos, G.A. Neves, R.R. Menezes, A brief review on hydroxyapatite production and use in biomedicine. Cerâmica 65(374), 282–302 (2019). https://doi.org/10.1590/0366-69132019653742706

    Article  Google Scholar 

  15. J. Ren, D. Zhao, F. Qi, W. Liu, Y. Chen, Heat and hydrothermal treatments on the microstructure evolution and mechanical properties of plasma sprayed hydroxyapatite coatings reinforced with graphene nanoplatelets. J. Mech. Behav. Biomed. Mater. 101, 103418 (2020). https://doi.org/10.1016/j.jmbbm.2019.103418

    Article  Google Scholar 

  16. M.J. Assael, C.F. Chen, I. Metaxa, W.A. Wakeham, Thermal conductivity of suspensions of carbon nanotubes in water. Int. J. Thermophys. 25(4), 971–985 (2004). https://doi.org/10.1023/B:IJOT.0000038494.22494.04

    Article  ADS  Google Scholar 

  17. M. Moghaddari, F. Yousefi, S. Aparicio, S.M. Hosseini, Thermal conductivity and structuring of multiwalled carbon nanotubes based nanofluids. J. Mol. Liq. 307, 112977 (2020). https://doi.org/10.1016/j.molliq.2020.112977

    Article  Google Scholar 

  18. Z. Yang, J. Tian, Z. Yin, C. Cui, W. Qian, F. Wei, Carbon nanotube-and graphene-based nanomaterials and applications in high-voltage supercapacitor: a review. Carbon 141, 467–480 (2019). https://doi.org/10.1016/j.carbon.2018.10.010

    Article  Google Scholar 

  19. T. Hayat, Z. Hussain, B. Ahmed, A. Alsaedi, Base fluids with CNTs as nanoparticles through non-Darcy porous medium in convectively heated flow: a comparative study. Adv. Powder Technol. 28(8), 1855–1865 (2017). https://doi.org/10.1016/j.apt.2017.04.003

    Article  Google Scholar 

  20. A. Abidi, Z. Jokar, S.M.R. Allahyari, F. Kolahi Sadigh, S.M. Sajadi, P. Firouzi, D. Baleanu, F. Ghaemi, A. Karimipour, Improve thermal performance of simulated-body-fluid as a solution with an ion concentration close to human blood plasma, by additive zinc oxide and its composites: ZnO/carbon nanotube and ZnO/hydroxyapatite. J. Mol. Liq. (2021). https://doi.org/10.1016/j.molliq.2021.117457

    Article  Google Scholar 

  21. C. Du, Q. Nguyen, O. Malekahmadi, A. Mardani, Z. Jokar, E. Babadi, A. D’Orazio, A. Karimipour, Z. Li, Q.V. Bach, Thermal conductivity enhancement of nanofluid by adding multiwalled carbon nanotubes: Characterization and numerical modeling patterns. Math. Methods Appl. Sci. (2020). https://doi.org/10.1002/mma.6466

    Article  Google Scholar 

  22. A. Karimipour, O. Malekahmadi, A. Karimipour, M. Shahgholi, Z. Li, Thermal conductivity enhancement via synthesis produces a new hybrid mixture composed of copper oxide and multi-walled carbon nanotube dispersed in water: experimental characterization and artificial neural network modeling. Int. J. Thermophys. 41(8), 116 (2020). https://doi.org/10.1007/s10765-020-02702-y

    Article  ADS  Google Scholar 

  23. J. Alsarraf, O. Malekahmadi, A. Karimipour, I. Tlili, A. Karimipour, M. Ghashang, Increase thermal conductivity of aqueous mixture by additives graphene nanoparticles in water via an experimental/numerical study: Synthesise, characterization, conductivity measurement, and neural network modeling. Int. Commun. Heat Mass Transfer 118, 104864 (2020). https://doi.org/10.1016/j.icheatmasstransfer.2020.104864

    Article  Google Scholar 

  24. Q. Nguyen, P. Ghorbani, S.A. Bagherzadeh, O. Malekahmadi, A. Karimipour, "Performance of joined artificial neural network and genetic algorithm to study the effect of temperature and mass fraction of nanoparticles dispersed in ethanol. Math. Methods Appl. Sci. (2020). https://doi.org/10.1002/mma.6688

    Article  Google Scholar 

  25. Z. Ying, B. He, Di. He, Y. Kuang, J. Ren, Bo. Song, Comparisons of single-phase and two-phase models for numerical predictions of Al2O3/water nanofluids convective heat transfer. Adv. Powder Technol. 31(7), 3050–3061 (2020). https://doi.org/10.1016/j.apt.2020.05.032

    Article  Google Scholar 

  26. I.O. Alade, T.A. Oyehan, I.K. Popoola, S.O. Olatunji, A. Bagudu, Modeling thermal conductivity enhancement of metal and metallic oxide nanofluids using support vector regression. Adv. Powder Technol. 29(1), 157–167 (2018). https://doi.org/10.1016/j.apt.2017.10.023

    Article  Google Scholar 

  27. E.M. Achhal, H. Jabraoui, S. Zeroual, H. Loulijat, A. Hasnaoui, S. Ouaskit, Modeling and simulations of nanofluids using classical molecular dynamics: particle size and temperature effects on thermal conductivity. Adv. Powder Technol. 29(10), 2434–2439 (2018). https://doi.org/10.1016/j.apt.2018.06.023

    Article  Google Scholar 

  28. Q. Nguyen, R. Rizvandi, A. Karimipour, O. Malekahmadi, Q.V. Bach, A novel correlation to calculate thermal conductivity of aqueous hybrid graphene oxide/silicon dioxide nanofluid: synthesis, characterizations, preparation, and artificial neural network modeling. Arab. J. Sci. Eng. 45(11), 9747–9758 (2020). https://doi.org/10.1007/s13369-020-04885-w

    Article  Google Scholar 

  29. C. Sun, S. Taherifar, O. Malekahmadi, A. Karimipour, A. Karimipour, Q.V. Bach, Liquid paraffin thermal conductivity with additives tungsten trioxide nanoparticles: synthesis and propose a new composed approach of fuzzy logic/artificial neural network. Arab. J. Sci. Eng. 46, 2543–2552 (2021). https://doi.org/10.1007/s13369-020-05151-9

    Article  Google Scholar 

  30. H. Saniei, S. Mousavi, Surface modification of PLA 3D-printed implants by electrospinning with enhanced bioactivity and cell affinity. Polymer 196, 122467 (2020)

    Article  Google Scholar 

  31. R. Bakhtiari, B. Kamkari, M. Afrand, A. Abdollahi, Preparation of stable TiO2-graphene/water hybrid nanofluids and development of a new correlation for thermal conductivity. Powder Technol. 385, 466–477 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

“The authors extend their appreciation to the Deputyship for Research and Innovation, Ministry of Education in Saudi Arabia for funding this research work through the project number IFPIP-429-135-1442 and King Abdulaziz University, DSR, Jeddah, Saudi Arabia.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arash Karimipour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abu-Hamdeh, N.H., Daqrouq, K.O., Karimipour, A. et al. Thermal management of carbon-based dental laminate via additives carbon nanotube and hydroxyapatite in a vessel micro-flow based on the numerical/empirical data. Eur. Phys. J. Plus 137, 137 (2022). https://doi.org/10.1140/epjp/s13360-022-02366-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-02366-7

Navigation