Skip to main content
Log in

Solid–liquid modulator via phononic crystal-based Mach–Zehnder interferometer

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

This paper introduces a solid–liquid modulator for the first time in a solid–liquid phononic crystal (PnC). Adjusting and designing of the liquid-based Mach–Zehnder interferometer (MZI) in a solid phononic crystal play the key role to realize the novel proposed modulator. The proposed PnC configuration is a square lattice composed of the circular vacuum cylinders immersed in an aluminum background. This structure consists of several line defects creating the symmetric Y-shape MZI with the water inclusions. The variations of water properties in the sensing arm of MZI result in changing the acoustic pressure in the output of the modulator. The simulation results reveal that changing the temperature of the water inclusions in the sensing arm leads to the different output phase shifts. This phase variation induces the destructive and constructive interference between two arms, where the modulator output yields the maximum and the minimum values in a specific frequency (fs = 233.9 kHz). Moreover, a high average quality factor of 1700, and the ultra-high extinction ratio of − 25.12 dB result in the output profile of the proposed modulator. Besides, the admirable insertion losses are obtained − 0.25, and − 21.53 dB for ON and Off modes, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A. Khelif et al., Guiding and bending of acoustic waves in highly confined phononic crystal waveguides. Appl. Phys. Lett. 84(22), 4400–4402 (2004)

    Article  ADS  Google Scholar 

  2. M. Kushwaha, B. Djafari-Rouhani, Complete acoustic stop bands for cubic arrays of spherical liquid balloons. J. Appl. Phys. 80(6), 3191–3195 (1996)

    Article  ADS  Google Scholar 

  3. M. Kafesaki, M. Sigalas, E. Economou, Elastic wave band gaps in 3-D periodic polymer matrix composites. Solid State Commun. 96(5), 285–289 (1995)

    Article  ADS  Google Scholar 

  4. J. Babaki, F. Nazari, Heterostructure based demultiplexer using solid–solid phononic crystal ring resonators. J. Phys. D Appl. Phys. 53(37), 375301 (2020)

    Article  Google Scholar 

  5. B. Rostami-Dogolsara, K.M.F. Mohammad, N. Fakhroddin, Designing switchable phononic crystal-based acoustic demultiplexer. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 63(9), 1468–1473 (2016)

    Article  Google Scholar 

  6. Y. Pennec et al., Tunable filtering and demultiplexing in phononic crystals with hollow cylinders. Phys. Rev. E 69(4), 046608 (2004)

    Article  ADS  Google Scholar 

  7. B. Rostami-Dogolsara, M.K. Moravvej-Farshi, F. Nazari, Designing phononic crystal based tunable four-channel acoustic demultiplexer. J. Mol. Liq. 281, 100–107 (2019)

    Article  Google Scholar 

  8. A. Khelif et al., Transmittivity through straight and stublike waveguides in a two-dimensional phononic crystal. Phys. Rev. B 65(17), 174308 (2002)

    Article  ADS  Google Scholar 

  9. A. Khelif et al., Transmission and dispersion relations of perfect and defect-containing waveguide structures in phononic band gap materials. Phys. Rev. B 68(2), 024302 (2003)

    Article  ADS  Google Scholar 

  10. B. Rostami-Dogolsara, M.K. Moravvej-Farshi, F. Nazari, Acoustic add-drop filters based on phononic crystal ring resonators. Phys. Rev. B 93(1), 014304 (2016)

    Article  ADS  Google Scholar 

  11. A. Håkansson, J. Sánchez-Dehesa, L. Sanchis, Acoustic lens design by genetic algorithms. Phys. Rev. B 70(21), 214302 (2004)

    Article  ADS  Google Scholar 

  12. S. Yang et al., Focusing of sound in a 3D phononic crystal. Phys. Rev. Lett. 93(2), 024301 (2004)

    Article  ADS  Google Scholar 

  13. R. Lucklum, J. Li, Phononic crystals for liquid sensor applications. Meas. Sci. Technol. 20(12), 124014 (2009)

    Article  ADS  Google Scholar 

  14. Z. Wang et al., Imaging localized phononic cavity modes with laser interferometer. J. Phys. D Appl. Phy. 51(25), 255104 (2018)

    Article  ADS  Google Scholar 

  15. R. Ganesh, S. Gonella, From modal mixing to tunable functional switches in nonlinear phononic crystals. Phys. Rev. Lett. 114(5), 054302 (2015)

    Article  ADS  Google Scholar 

  16. A. Shakeri, S. Darbari, M. Moravvej-Farshi, Designing a tunable acoustic resonator based on defect modes, stimulated by selectively biased PZT rods in a 2D phononic crystal. Ultrasonics 92, 8–12 (2019)

    Article  Google Scholar 

  17. Y. Zhou, Comparison of numerical models for bulk and surface acoustic wave-induced acoustophoresis in a microchannel. Eur. Phys. J. Plus 135(9), 1–12 (2020)

    Article  ADS  Google Scholar 

  18. F. Motaei, A. Bahrami, Two-channel all-elastic solid-solid phononic switch. Phys. Scr. 95(6), 065703 (2020)

    Article  ADS  Google Scholar 

  19. H. Zhai, J. Xiang, Band gaps of a fan-like solid-fluid phononic crystal. MS&E 770(1), 012044 (2020)

    Google Scholar 

  20. W.-P. Yang, L.-W. Chen, The tunable acoustic band gaps of two-dimensional phononic crystals with a dielectric elastomer cylindrical actuator. Smart Mater. Struct. 17(1), 015011 (2007)

    Article  ADS  Google Scholar 

  21. N. Zhen et al., Bandgap calculation for mixed in-plane waves in 2D phononic crystals based on Dirichlet-to-Neumann map. Acta. Mech. Sin. 28(4), 1143–1153 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  22. O.A. Kaya et al., Acoustic Mach-Zehnder interferometer utilizing self-collimated beams in a two-dimensional phononic crystal. Sens. Actuators B Chem. 203, 197–203 (2014)

    Article  Google Scholar 

  23. A. Salman et al., Low-concentration liquid sensing by an acoustic Mach-Zehnder interferometer in a two-dimensional phononic crystal. J. Phys. D Appl. Phys. 48(25), 255301 (2015)

    Article  ADS  Google Scholar 

  24. S. Benchabane et al., Guidance of surface waves in a micron-scale phononic crystal line-defect waveguide. Appl. Phys. Lett. 106(8), 081903 (2015)

    Article  ADS  Google Scholar 

  25. M.M. Razip Wee et al., Guiding and confinement of interface acoustic waves in solid-fluid pillar-based phononic crystals. AIP Adv. 6(12), 121703 (2016)

    Article  ADS  Google Scholar 

  26. A. Shelke et al., Wave guiding and wave modulation using phononic crystal defects. J. Intell. Mater. Syst. Struct. 25(13), 1541–1552 (2014)

    Article  Google Scholar 

  27. C.J. Rupp, M.L. Dunn, K. Maute, Switchable phononic wave filtering, guiding, harvesting, and actuating in polarization-patterned piezoelectric solids. Appl. Phys. Lett. 96(11), 111902 (2010)

    Article  ADS  Google Scholar 

  28. X.-F. Zhu, Acoustic waves switch based on meta-fluid phononic crystals. J. Appl. Phys. 112(4), 044509 (2012)

    Article  ADS  Google Scholar 

  29. F. Nazari, S. Abdollahi, PT-symmetric system based optical modulator. Appl. Phys. B 124(10), 1–6 (2018)

    Article  Google Scholar 

  30. X.-Q. Li, Y. Xu, Optical sensing by using photonic crystal based Mach-Zehnder interferometer. Opt. Commun. 301, 7–11 (2013)

    Article  ADS  Google Scholar 

  31. H. Gharibi et al., A very high sensitive interferometric phononic crystal liquid sensor. J. Mol. Liq. 296, 111878 (2019)

    Article  Google Scholar 

  32. D.R. Lide, CRC Handbook of Chemistry and Physics, vol. 85 (CRC Press, CRC press, 2004)

    Google Scholar 

  33. W. Wagner, H.-J. Kretzschmar, IAPWS Industrial Formulation 1997 for the thermodynamic Properties of Water and Steam. International steam tables: properties of water and steam based on the industrial formulation IAPWS-IF97 (2008), p. 7–150.

  34. F. Motaei, A. Bahrami, Nonlinear elastic switch based on solid–solid phononic crystals. J. Mater. Sci. 55(21), 8983–8991 (2020)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Amol University of Special Modern Technologies for its facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fakhroddin Nazari.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing for financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babaki, J., Nazari, F. Solid–liquid modulator via phononic crystal-based Mach–Zehnder interferometer. Eur. Phys. J. Plus 137, 172 (2022). https://doi.org/10.1140/epjp/s13360-022-02386-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-02386-3

Navigation