Skip to main content
Log in

Spontaneous emergence of a spin state for an emitter in a time-varying medium

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Time-varying media can dramatically modify the emission of embedded sources by producing time reversed waves refocusing on the source. Here, we show that such a back action can create an angular momentum by setting the source in a spontaneous spin state. We experimentally implement this coupling using self-propelled bouncing droplets sources coupled to the surface waves they emit on a parametrically excited bath. The spin state dynamics result from a self-organized interplay between the source motion and the time reversed waves. The discrete stability analysis agrees with the experimental observations. In addition, we show that these spin states provide a unique opportunity for an experimental access to parameters enabling comparison and calibration of the various existing models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: Data used in the article will be made available on request.]

References

  1. D. Holberg, K. Kunz, Parametric properties of fields in a slab of time-varying permittivity. IEEE Trans. Antennas Propag. 14, 184–194 (1966)

    Article  ADS  Google Scholar 

  2. T.T. Koutserimpas, R. Fleury, Nonreciprocal gain in non-hermitian time-floquet systems. Phys Rev Lett. 120, 087401 (2018)

    Article  ADS  Google Scholar 

  3. X. Wang, G. Ptitcyn, V.S. Asadchy, A. Díaz-Rubio, M.S. Mirmoosa, S. Fan et al., Nonreciprocity in bianisotropic systems with uniform time modulation. Phys Rev Lett. 125, 266102 (2020)

    Article  ADS  Google Scholar 

  4. Z. Yu, S. Fan, Complete optical isolation created by indirect interband photonic transitions. Nature Photon. 3, 91–94 (2009)

    Article  ADS  Google Scholar 

  5. F. Morgenthaler, Velocity modulation of electromagnetic waves. IRE Trans Microw Theory Techn. 6, 167–172 (1958)

    Article  ADS  Google Scholar 

  6. M. Notomi, S. Mitsugi, Wavelength conversion via dynamic refractive index tuning of a cavity. Phys Rev A. 73, 051803 (2006)

    Article  ADS  Google Scholar 

  7. C. Caloz, Z.-L. Deck-Léger, Spacetime metamaterials, part II: Theory and applications. IEEE Trans. Antennas Propag. 68, 1583–1598 (2020)

    Article  ADS  Google Scholar 

  8. J.T. Mendonça, P.K. Shukla, Time refraction and time reflection: two basic concepts. Phys. Scr. 65, 160–163 (2006)

    Article  ADS  Google Scholar 

  9. R. Fante, Transmission of electromagnetic waves into time-varying media. IEEE Trans. Antennas Propag. 19, 417–424 (1971)

    Article  ADS  Google Scholar 

  10. V.L. Ginzburg, V.N. Tsytovich, Several problems of the theory of transition radiation and transition scattering. Phys. Rep. 49, 1–89 (1979)

    Article  ADS  Google Scholar 

  11. V. Bacot, G. Durey, A. Eddi, M. Fink, E. Fort, Phase-conjugate mirror for water waves driven by the Faraday instability. PNAS 116, 8809–8814 (2019)

    Article  ADS  Google Scholar 

  12. M. Labousse, S. Perrard, Y. Couder, E. Fort, Build-up of macroscopic eigenstates in a memory-based constrained system. New J. Phys. 16, 1–17 (2014)

    Article  Google Scholar 

  13. S. Perrard, M. Labousse, E. Fort, Y. Couder, Chaos driven by interfering memory. Phys. Rev. Lett. 113, 104101 (2014)

    Article  ADS  Google Scholar 

  14. N.B. Budanur, M. Fleury, State space geometry of the chaotic pilot-wave hydrodynamics. Chaos 29, 013122 (2019)

    Article  MathSciNet  ADS  Google Scholar 

  15. Silveirinha MG. Time-crystal model of the electron spin. arXiv:210712158 [physics, physics:quant-ph] [Internet]. 2021 [cited 2021 Nov 4]. http://arxiv.org/abs/2107.12158

  16. Y. Couder, S. Protiere, E. Fort, A. Boudaoud, Walking and orbiting droplets. Nature 437, 208 (2005)

    Article  ADS  Google Scholar 

  17. J.W.M. Bush, Pilot-wave hydrodynamics. Annu Rev Fluid Mech. Ann. Rev. 47, 269–292 (2015)

    Article  MathSciNet  ADS  Google Scholar 

  18. A. Eddi, E. Sultan, J. Moukhtar, E. Fort, M. Rossi, Y. Couder, Information stored in Faraday waves: the origin of a path memory. J. Fluid Mech. 674, 433–463 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  19. E. Fort, A. Eddi, A. Boudaoud, J. Moukhtar, Y. Couder, Path-memory induced quantization of classical orbits. Proc. Natl. Acad. Sci. 107, 17515–17520 (2010)

    Article  ADS  Google Scholar 

  20. V. Bacot, S. Perrard, M. Labousse, Y. Couder, E. Fort, Multistable FREE states of an active particle from a coherent memory dynamics. Phys. Rev. Lett. Am. Phys. Soc. 122, 104303 (2019)

    Article  ADS  Google Scholar 

  21. M. Hubert, S. Perrard, M. Labousse, N. Vandewalle, Y. Couder, Tunable bimodal explorations of space from memory-driven deterministic dynamics. Phys. Rev. E. Am. Phys. Soc. 100, 032201 (2019)

    Article  ADS  Google Scholar 

  22. N. Sampara, T. Gilet, Two-frequency forcing of droplet rebounds on a liquid bath. Phys. Rev. E. 94, 053112 (2016)

    Article  ADS  Google Scholar 

  23. Ø. Wind-willassen, J. Moláček, D.M. Harris, J.W.M. Bush, Exotic states of bouncing and walking droplets. Phys. Fluids 25, 082002 (2013)

    Article  ADS  Google Scholar 

  24. R.N. Valani, A.C. Slim, T. Simula, Superwalking droplets. Phys. Rev. Lett. Am. Phys. Soc. 123, 024503 (2019)

    Article  ADS  Google Scholar 

  25. A.U. Oza, D.M. Harris, R.R. Rosales, J.W.M. Bush, Pilot-wave dynamics in a rotating frame: on the emergence of orbital quantization. J Fluid Mech. 744, 404–429 (2014)

    Article  ADS  Google Scholar 

  26. A.U. Oza, R.R. Rosales, J.W.M. Bush, Hydrodynamic spin states. Chaos 28, 096106 (2018)

    Article  ADS  Google Scholar 

  27. D.M. Harris, J.W.M. Bush, Droplets walking in a rotating frame: from quantized orbits to multimodal statistics. J. Fluid Mech. 739, 444–464 (2013)

    Article  ADS  Google Scholar 

  28. M. Durey, P.A. Milewski, Faraday wave–droplet dynamics: discrete-time analysis. J Fluid Mech. 821, 296–329 (2017)

    Article  MathSciNet  ADS  Google Scholar 

  29. Durey M. Faraday wave-droplet dynamics : a hydrodynamic quantum analogue [Internet] [Ph.D.]. University of Bath; 2018 [cited 2020 Jun 24]. https://researchportal.bath.ac.uk/en/studentthesis/faraday-wavedroplet-dynamics-a-hydrodynamic-quantum-analogue(f505ec32-4c14-4eef-81b5-4a3a99a1d52a).html

  30. M. Labousse, S. Perrard, Y. Couder, E. Fort, Self-attraction into spinning eigenstates of a mobile wave source by its emission back-reaction. Phys. Rev. E. 94, 042224 (2016)

    Article  ADS  Google Scholar 

  31. D.M. Harris, J.W.M. Bush, Generating uniaxial vibration with an electrodynamic shaker and external air bearing. J. Sound Vib. 334, 255–269 (2015)

    Article  ADS  Google Scholar 

  32. D.M. Harris, T. Liu, J.W.M. Bush, A low-cost, precise piezoelectric droplet-on-demand generator. Exp. Fluids 56, 1–7 (2015)

    Article  Google Scholar 

  33. Settles GS. Color schlieren optics—a review of techniques and applications. International Symposium on Flow Visualization. Bochum, West Germany, September 9–12, 1980; 1981.

  34. S. Protiere, A. Boudaoud, Y. Couder, Particle wave association on a fluid interface. J Fluid Mech. 554, 85–108 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  35. J. Moláček, J.W.M. Bush, Drops bouncing on a vibrating bath. J Fluid Mech. 727, 582–611 (2013)

    Article  ADS  Google Scholar 

  36. C.A. Galeano-Rios, P.A. Milewski, J.-M. Vanden-Broeck, Non-wetting impact of a sphere onto a bath and its application to bouncing droplets. J. Fluid Mech. 826, 97–127 (2017)

    Article  MathSciNet  ADS  Google Scholar 

  37. Y. Couder, E. Fort, Single-particle diffraction and interference at a macroscopic scale. Phys. Rev. Lett. 154101, 1–4 (2006)

    Google Scholar 

  38. A.C.J. Luo, Nonlinear Discrete Dynamical Systems. Regularity and Complexity in Dynamical Systems (Springer, New York, 2012), pp. 65–136

    Book  Google Scholar 

  39. A.U. Oza, Ø. Wind-Willassen, D.M. Harris, R.R. Rosales, J.W.M. Bush, Pilot-wave hydrodynamics in a rotating frame: Exotic orbits. Phys. Fluids 26, 082101 (2014)

    Article  ADS  Google Scholar 

  40. S. Perrard, M. Labousse, M. Miskin, E. Fort, Y. Couder, Self-organization into quantized eigenstates of a classical wave-driven particle. Nat. Commun. 5, 3219 (2014)

    Article  ADS  Google Scholar 

  41. D.M. Harris, J. Moukhtar, E. Fort, Y. Couder, J.W.M. Bush, Wavelike statistics from pilot-wave dynamics in a circular corral. Phys. Rev. E. 88, 011001 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

In memory of Yves Couder who would have enjoyed observing these spin states. The authors are grateful to Antonin Eddi, Sander Wildeman and Chloé d’Hardemare for insightful discussions. The authors thank the support of AXA research fund the French National Research Agency LABEX WIFI (ANR-10-LABX-24), and a Freeside Fund #CoS grant. The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuel Fort.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bernard-Bernardet, S., Fleury, M. & Fort, E. Spontaneous emergence of a spin state for an emitter in a time-varying medium. Eur. Phys. J. Plus 137, 432 (2022). https://doi.org/10.1140/epjp/s13360-022-02646-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-02646-2

Navigation