Skip to main content
Log in

New exploration on bifurcation in fractional-order genetic regulatory networks incorporating both type delays

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

This study principally deals with the stability property and the emergence of Hopf bifurcation for fractional-order genetic regulatory networks incorporating distributed delays and discrete delays. By two suitable variable substitutions, we obtain two new equivalent fractional-order differential systems involving only discrete delay. Applying the stability technique and bifurcation theory of fractional-order differential equations, we set up two new sufficient criteria guaranteeing the stability and the generation of Hopf bifurcation of the involved fractional-order genetic regulatory network models. The research confirms that the delay has a momentous influence on the stability of networks and bifurcation control for the considered fractional-order genetic regulatory networks. The Matlab simulation plots effectively check the effectiveness of the theoretical analysis. The established results of this research can be powerfully utilized to control genetic regulatory networks and owns very useful theoretical value in life activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

No data were used to support this study.

References

  1. S.S. Xiao, X. Zhang, X. Wang, Y.T. Wang, A reduced-order approach to analyze stability of genetic regulatory networks with discrete time delays. Neurocomputing 323, 311–318 (2019)

    Article  Google Scholar 

  2. C.G. Li, L.N. Chen, K. Aihara, Stability of genetic networks with SUM regulatory logic: \(\text{ Lur}^{,}\)e system and LMI approach. IEEE Trans. Circuits Syst. Part I Regul. Pap. 53(11), 2451–2458 (2006)

    Article  MATH  Google Scholar 

  3. D.D. Yue, Z.H. Guan, J. Chen, G. Ling, Y.H. Wu, Bifurcations and chaos of a discrete-time model in genetic regulatory networks. Nonlinear Dyn. 87, 567–586 (2017)

    Article  MATH  Google Scholar 

  4. W.Q. Wang, Y.Z. Wang, S.K. Nguang, S.M. Zhong, F. Liu, Delay partition method for the robust stability of uncertain genetic regulatory networks with time-varying delays. Neurocomputing 173, 899–911 (2016)

    Article  Google Scholar 

  5. P. Balasubramaniam, R. Sathy, Robust asymptotic stability of fuzzy Markovian jumping genetic regulatory net-works with time-varying delays by delay decomposition approach. Commun. Nonlinear Sci. Numer. Simul. 16(2), 928–939 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. J.L. Qiu, K.Y. Sun, C.D. Yang, X. Chen, X.Y. Chen, A.C. Zhang, Finite-time stability of genetic regulatory networks with impulsive effects. Neurocomputing 219, 9–14 (2017)

    Article  Google Scholar 

  7. M.Q. Xue, Y. Tang, L.G. Wu, F. Qian, Model approximation for switched genetic regulatory networks. IEEE Trans. Neural Netw. Learn. Syst. 29(8), 3404–3417 (2018)

    Article  MathSciNet  Google Scholar 

  8. T.C. Jiao, G.D. Zong, S.K. Nguang, C.S. Zhang, Stability analysis of genetic regulatory networks with general random disturbances. IEEE Trans. Nanobiosci. 18(2), 128–135 (2019)

    Article  Google Scholar 

  9. D.D. Yue, Z.H. Guan, J. Li, F. Liu, J.W. Xiao, G. Ling, Stability and bifurcation of delay-coupled genetic regulatory networks with hub structure. J. Frankl. Inst. 356(5), 2847–2869 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  10. X. Zhang, Y.Y. Han, L.G. Wu, State estimation for delayed genetic regulatory networks with reaction-diffusion terms. IEEE Trans. Neural Netw. Learn. Syst. 29(2), 299–309 (2018)

    Article  MathSciNet  Google Scholar 

  11. R. Manivannan, J.D. Cao, K.T. Chong, Generalized dissipativity state estimation for genetic regulatory networks with interval time-delay signals and leakage delays. Commun. Nonlinear Sci. Numer. Simul. 89, 105326 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  12. Y. Xue, L.N. Zhang, X. Zhang, Reachable set estimation for genetic regulatory networks with time-varying delays and bounded disturbances. Neurocomputing 403, 203–210 (2020)

    Article  Google Scholar 

  13. M. Syed Ali, R. Agalya, K.S. Hong, Non-fragile synchronization of genetic regulatory networks with randomly occurring controller gain fluctuation. Chin. J. Phys. 62, 132–143 (2019)

    Article  MathSciNet  Google Scholar 

  14. C.Y. Zou, X.Y. Wang, Robust stability of delayed Markovian switching genetic regulatory networks with reactionC diffusion terms. Comput. Math. Appl. 79(4), 1150–1164 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  15. Z.X. Wang, G.D. Liu, Y.H. Sun, H.L. Wu, Robust stability of stochastic delayed genetic regulatory networks. Cognit. Neurodyn. 3, 271–280 (2009)

    Article  Google Scholar 

  16. Z.X. Wang, X.F. Liao, J.L. Mao, G.D. Liu, Robust stability of stochastic genetic regulatory networks with discrete and distributed delays. Soft. Comput. 13, 1199–1208 (2009)

    Article  MATH  Google Scholar 

  17. D. Zhang, H.Y. Song, L. Yu, Q.G. Wang, C.J. Ong, Set-values filtering for discrete time-delay genetic regulatory networks with time-varying parameters. Nonlinear Dyn. 69, 693–703 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. A.L. Wu, L. Liu, T.W. Huang, Z.G. Zeng, Mittag–Leffler stability of fractional-order neural networks in the presence of generalized piecewise constant arguments. Neural Netw. 85, 118–127 (2017)

    Article  MATH  Google Scholar 

  19. A. Pratap, R. Raja, C. Sowmiya, O. Bagdasar, G. Rajchakit, Robust generalized Mittag–Leffler synchronization of fractional order neural networks with discontinuous activation and impulses. Neural Netw. 103, 128–141 (2018)

    Article  MATH  Google Scholar 

  20. J. Yuan, L.Z. Zhao, C.D. Huang, M. Xiao, Stability and bifurcation analysis of a fractional predatoCprey model involving two nonidentical delays. Math. Comput. Simul. 181, 562–580 (2021)

    Article  MATH  Google Scholar 

  21. C.J. Xu, C. Aouiti, Comparative analysis on Hopf bifurcation of integer order and fractional order two-neuron neural networks with delay. Int. J. Circuit Theory Appl. 48(9), 1459–1475 (2020)

    Article  Google Scholar 

  22. N.H. Sau, M.V. Thuan, N.T. Thanh Huyen, Passivity analysis of fractional-order neural networks with time-varying delay based on LMI approach. Circuits Syst. Signal Process. 39, 5906–5925 (2020)

    Article  Google Scholar 

  23. C.J. Xu, P.L. Li, On finite-time stability for fractional-order neural networks with proportional delays. Neural Process. Lett. 50(2), 1241–1256 (2019)

    Article  MathSciNet  Google Scholar 

  24. F.F. Du, J.G. Lu, New criterion for finite-time synchronization of fractional order memristor-based neural networks with time delay. Appl. Math. Comput. 389, 125616 (2021)

    MathSciNet  MATH  Google Scholar 

  25. C.J. Xu, M.X. Liao, P.L. Li, Y. Guo, Z.X. Liu, Bifurcation properties for fractional order delayed BAM neural networks. Cognit. Comput. 13(2), 322–356 (2021)

    Article  Google Scholar 

  26. Q.S. Sun, M. Xiao, B.B. Tao, Local bifurcation analysis of a fractional-order dynamic model of genetic regulatory networks with delays. Neural Process. Lett. 47, 1285–1296 (2018)

    Article  Google Scholar 

  27. Z.H. Wu, Z.M. Wang, T.J. Zhou, Global uniformasymptotical stability for fractional-order gene regulatory networks with time-varying delays and structured uncertainties. Adv. Differ. Equ. (2021). https://doi.org/10.1186/s13662-021-03243-w

    Article  Google Scholar 

  28. C.D. Huang, J.D. Cao, M. Xiao, Hybrid control on bifurcation for a delayed fractional gene regulatory network. Chaos Solitons Fractals 87, 19–29 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. M. Xiao, W.X. Zheng, J.X. Lin, G.P. Jiang, L.D. Zhao, J.D. Cao, Fractional-order PD control at Hopf bifurcations in delayed fractional-order small-world networks. J. Frankl. Inst. 354(17), 7643–7667 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  30. J. Alidousti, Stability and bifurcation analysis for a fractional prey-predator scavenger model. Appl. Math. Model. 81, 342–355 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  31. A. Lahrouz, R. Hajjami, M.E. Jarroudi, A. Settati, Mittag–Leffler stability and bifurcation of a nonlinear fractional model with relapse. J. Comput. Appl. Math. 386, 113247 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  32. B.B. Tao, M. Xiao, G.P. Jiang, J.D. Cao, Stability, bifurcation prediction and optimal control of a delayed integer-order small-world network based on the fractional-order PD control policy of variable order. J. Frankl. Inst. 357(15), 10288–10311 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  33. M. Xiao, W.X. Zheng, J.D. Cao, Stability and bifurcation of genetic regulatory networks with small RNAs and multiple delays. Int. J. Comput. Math. 91, 907–927 (2014)

    Article  MATH  Google Scholar 

  34. Y. Zhang, H.H. Liu, F. Yan, J. Zhou, Oscillatory behaviors in genetic regulatory networks mediated by microRNA with time delays and reaction-diffusion terms. IEEE Trans. Nanobiosci. 16(3), 166–176 (2017)

    Article  Google Scholar 

  35. F. Qing, M. Xiao, C.D. Huang, G.P. Jiang, J.L. Qiu, J.X. Lin, Z.X. Wang, C. Zheng, Stability and bifurcation analysis of a gene expression model with small RNAs and mixed delays. Adv. Differ. Equ. 240, 17 (2019)

    MathSciNet  MATH  Google Scholar 

  36. I. Podlubny, Fractional Differential Equations (Academic Press, New York, 1999)

    MATH  Google Scholar 

  37. B. Bandyopadhyay, S. Kamal, Stabliization and Control of Fractional Order Systems: A Sliding Mode Approach, vol. 317 (Springer, Heidelberg, 2015)

    MATH  Google Scholar 

  38. D. Matignon, Stability results for fractional differential equations with applications to control processing. Comput. Eng. Syst. Appl. 2, 963–968 (1996)

    Google Scholar 

  39. X.H. Wang, Z. Wang, J.W. Xia, Stability and bifurcation control of a delayed fractional-order eco-epidemiological model with incommensurate orders. J. Frankl. Inst. 356(15), 8278–8295 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  40. W.H. Deng, C.P. Li, J.H. Lü, Stability analysis of linear fractional differential system with multiple time delays. Nonlinear Dyn. 48(4), 409–416 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  41. C.D. Huang, H. Liu, X.Y. Shi, X.P. Chen, M. Xiao, Z.X. Wang, J.D. Cao, Bifurcations in a fractional-order neural network with multiple leakage delays. Neural Netw. 131, 115–126 (2020)

    Article  MATH  Google Scholar 

  42. C.D. Huang, X.B. Nie, X. Zhao, Q.K. Song, Z.W. Tu, M. Xiao, J.D. Cao, Novel bifurcation results for a delayed fractional-order quaternion-valued neural network. Neural Netw. 17, 67–93 (2019)

    Article  MATH  Google Scholar 

  43. C.J. Xu, M.X. Liao, P.L. Li, Y. Guo, Q.M. Xiao, S. Yuan, Influence of multiple time delays on bifurcation of fractional-order neural networks. Appl. Math. Comput. 361, 565–582 (2019)

    MathSciNet  MATH  Google Scholar 

  44. C.J. Xu, M.X. Liao, P.L. Li, Bifurcation control of a fractional-order delayed competition and cooperation model of two enterprises. Sci. China Technol. Sci. 62(2), 2130–2143 (2019)

    Article  ADS  Google Scholar 

  45. C.J. Xu, M.X. Liao, P.L. Li, Bifurcation control for a fractional-order competition model of Internet with delays. Nonlinear Dyn. 95(4), 3335–3356 (2019)

    Article  MATH  Google Scholar 

  46. C.J. Xu, M.X. Liao, P.L. Li, S. Yuan, Impact of leakage delay on bifurcation in fractional-order complex-valued neural networks. Chaos Solitons Fractals 142, 110535 (2021)

    Article  MathSciNet  Google Scholar 

  47. C.J. Xu, M.X. Liao, P.L. Li, Z.X. Liu, S. Yuan, New results on pseudo almost periodic solutions of quaternion-valued fuzzy cellular neural networks with delays. Fuzzy Sets Syst. 411, 25–47 (2021)

    Article  MATH  Google Scholar 

  48. C.J. Xu, Z.X. Liu, M.X. Liao, P.L. Li, Q.M. Xiao, S. Yuan, Fractional-order bidirectional associate memory (BAM) neural networks with multiple delays: the case of Hopf bifurcation. Math. Comput. Simul. 182, 471–494 (2021)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (No. 62062018) and Project of High-level Innovative Talents of Guizhou Province ([2016]5651). The authors would like to thank the referees and the editor for helpful suggestions incorporated into this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changjin Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, P., Li, Y., Gao, R. et al. New exploration on bifurcation in fractional-order genetic regulatory networks incorporating both type delays. Eur. Phys. J. Plus 137, 598 (2022). https://doi.org/10.1140/epjp/s13360-022-02726-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-02726-3

Navigation