Skip to main content
Log in

Bulk properties of the medium in comparison with models’ predictions in pp collisions at 13 TeV

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We report a study of the collective properties of the medium produced in pp collisions at 13 TeV. For this study, we used the measurements of the CMS experiment (Sirunyan et al. in Phys Rev D 96:112003, 2017) in the rapidity range \(|y| < 1\) and in the transverse momentum (\(p_T\)) range (0.1–1.7) GeV/c. Modified Hagedorn function with embedded transverse flow velocity and thermodynamically consistent Tsallis distribution functions are used to fit the measured \(p_T\) spectra of \(\pi ^{\pm }\), \(K^{\pm }\) and (anti)-protons and to extract the parameters that characterize the medium created in the collision. The average transverse flow velocity (\(<\beta _T>\)), extracted from the modified Hagedorn function, is found to decrease with the particle’s mass, the kinetic freeze-out temperature (\(T_{0}\)) and effective temperature (\(T_\mathrm{eff}\)) are larger for protons than pions while we observed even higher values for kaons than protons due to their strange quark content. Furthermore, four Monte Carlo event generators, EPOS-LHC, Pythia, QGSJETII-04 and Sibyll2.3d, are used to compare the measurements. The EPOS-LHC and Sibyll2.3d models reproduce the experimental data followed by Pythia, while QGSJETII-04 has greater departure from data for \(\pi ^{\pm }\) and \(K^\pm \)-mesons. In the case of (anti-)protons, only EPOS-LHC predicts well the \(p_T\) distribution over the entire \(p_T\) range. Although the models have shown good predictions for a particular particle’s \(p_T\) spectra or in a range of the spectra, none of them could reproduce the distributions over the entire \(p_T\) range for all the particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability statement

The data used to support the findings of this study are quoted from the mentioned references. As a phenomenological work, this paper does not report new data.

References

  1. J. Cleymans, H. Oeschler, K. Redlich, S. Wheaton, Phys. Rev. C 73, 034905 (2006). https://doi.org/10.1103/PhysRevC.73.034905

    Article  ADS  Google Scholar 

  2. A. Andronic, P. Braun-Munzinger, J. Stachel, Nucl. Phys. A 834, 237C (2010). https://doi.org/10.1016/j.nuclphysa.2009.12.048

    Article  ADS  Google Scholar 

  3. A. Andronic, P. Braun-Munzinger, J. Stachel, Phys. Lett. B 673, 142 (2009). https://doi.org/10.1016/j.physletb.2009.06.021. [Erratum: Phys. Lett. B 678, 516 (2009)]

  4. M. Waqas, H.M. Chen, G.X. Peng, A.A.K. Haj Ismail, M. Ajaz, Z. Wazir, R. Shehzadi, S. Jamal, A. AbdelKader, Entropy 23(10), 1363 (2021). https://doi.org/10.3390/e23101363

    Article  ADS  Google Scholar 

  5. M. Waqas, F.H. Liu, Z. Wazir, Adv. High Energy Phys. 2020, 8198126 (2020). https://doi.org/10.1155/2020/8198126

    Article  Google Scholar 

  6. M. Waqas, F.H. Liu, L.L. Li, H.M. Alfanda, Nucl. Sci. Tech. 31(11), 109 (2020). https://doi.org/10.1007/s41365-020-00821-7

    Article  Google Scholar 

  7. P.-P. Yang, M. Ajaz, M. Waqas, F.-H, Liu, M.K. Suleymanov, J. Phys. G: Nucl. Part. Phys. 49, 055110 (2022). https://doi.org/10.1088/1361-6471/ac5d0b

  8. K.K. Olimov, F.H. Liu, K.A. Musaev, K. Olimov, B.J. Tukhtaev, B.S. Yuldashev, N.S. Saidkhanov, K.I. Umarov, K.G. Gulamov, Int. J. Mod. Phys. A 36(20), 2150149 (2021). https://doi.org/10.1142/S0217751X21501499

    Article  ADS  Google Scholar 

  9. K.K. Olimov, A. Iqbal, S. Masood, Int. J. Mod. Phys. A 35(27), 2050167 (2020). https://doi.org/10.1142/S0217751X20501675

    Article  ADS  Google Scholar 

  10. P.K. Khandai, P. Sett, P. Shukla, V. Singh, J. Phys. G 41, 025105 (2014). https://doi.org/10.1088/0954-3899/41/2/025105

    Article  ADS  Google Scholar 

  11. K.K. Olimov et al., Mod. Phys. Lett. A 35(29), 2050237 (2020). https://doi.org/10.1142/S0217732320502375

    Article  ADS  Google Scholar 

  12. A. Adare et al., Phys. Rev. D 83, 052004 (2011). https://doi.org/10.1103/PhysRevD.83.052004

    Article  ADS  Google Scholar 

  13. J. Cleymans, G.I. Lykasov, A.S. Parvan, A.S. Sorin, O.V. Teryaev, D. Worku, Phys. Lett. B 723, 351 (2013). https://doi.org/10.1016/j.physletb.2013.05.029

    Article  ADS  Google Scholar 

  14. P.K. Khandai, P. Sett, P. Shukla, V. Singh, Int. J. Mod. Phys. A 28, 1350066 (2013). https://doi.org/10.1142/S0217751X13500668

    Article  ADS  Google Scholar 

  15. J. Cleymans, D. Worku, J. Phys. G 39, 025006 (2012). https://doi.org/10.1088/0954-3899/39/2/025006

    Article  ADS  Google Scholar 

  16. G. Wilk, Z. Wlodarczyk, Phys. Rev. Lett. 84, 2770 (2000). https://doi.org/10.1103/PhysRevLett.84.2770

    Article  ADS  Google Scholar 

  17. S. Ullah, M. Ajaz, Z. Wazir et al., Sci. Rep. 9, 11811 (2019). https://doi.org/10.1038/s41598-019-48272-4

    Article  ADS  Google Scholar 

  18. W. Muhammad, F.H. Liu, Indian J. Phys. (2021). https://doi.org/10.1007/s12648-021-02058-5

    Article  Google Scholar 

  19. M. Ajaz, A. Haj Ismail, A. Ahmed, Z. Wazir, R. Shehzadi, H. Younis, G. Khan, R. Khan, S. Ali, M. Waqas, P. Yang, E. Dawi, Results Phys. 30, 104790 (2021). https://doi.org/10.1016/j.rinp.2021.104790

    Article  Google Scholar 

  20. M. Ajaz, R. Khan, Z. Wazir, I. Khan, T. Bibi, Int. J. Theor. Phys. 59, 3338 (2020). https://doi.org/10.1007/s10773-020-04584-0

    Article  Google Scholar 

  21. M. Ajaz, M. Tufail, Y. Ali, Arab. J. Sci. Eng. 45, 411 (2020). https://doi.org/10.1007/s13369-019-04224-8

    Article  Google Scholar 

  22. R. Khan, M. Ajaz, Mod. Phys. Lett. A 35, 2050190 (2020). https://doi.org/10.1142/S0217732320501904

    Article  ADS  Google Scholar 

  23. M. Ajaz, R. Khan, Y. Ali, M. Suleymanov, Mod. Phys. Lett. A 35, 1950349 (2020). https://doi.org/10.1142/S0217732319503498

    Article  ADS  Google Scholar 

  24. M. Waqas, F.H. Liu, Eur. Phys. J. Plus 135, 147 (2020). https://doi.org/10.1140/epjp/s13360-020-00213-1

    Article  Google Scholar 

  25. L.L. Li, F.H. Liu, M. Waqas, R. Al-Yusufi, A. Mujear, Adv. High Energy Phys. 2020, 5356705 (2020). https://doi.org/10.1155/2020/5356705

    Article  Google Scholar 

  26. A. Sirunyan et al., Phys. Rev. D 96, 112003 (2017). https://doi.org/10.1103/PhysRevD.96.112003

    Article  ADS  Google Scholar 

  27. T. Pierog, I. Karpenko, J.M. Katzy, E. Yatsenko, K. Werner, Phys. Rev. C 92(3), 034906 (2015). https://doi.org/10.1103/PhysRevC.92.034906

    Article  ADS  Google Scholar 

  28. T. Sjostrand, S. Mrenna, P.Z. Skands, JHEP 05, 026 (2006). https://doi.org/10.1088/1126-6708/2006/05/026

    Article  ADS  Google Scholar 

  29. S. Ostapchenko, Phys. Rev. D 83, 014018 (2011). https://doi.org/10.1103/PhysRevD.83.014018

    Article  ADS  Google Scholar 

  30. S. Ostapchenko, Nucl. Phys. B Proc. Suppl. 151(1), 143 (2006). https://doi.org/10.1016/j.nuclphysbps.2005.07.026. Very High Energy Cosmic Ray Interactions

  31. F. Riehn, R. Engel, A. Fedynitch, T.K. Gaisser, T. Stanev, Phys. Rev. D 102(6), 063002 (2020). https://doi.org/10.1103/PhysRevD.102.063002

    Article  ADS  Google Scholar 

  32. H. Drescher, M. Hladik, S. Ostapchenko, T. Pierog, K. Werner, Phys. Rep. 350(2), 93 (2001). https://doi.org/10.1016/S0370-1573(00)00122-8

    Article  ADS  Google Scholar 

  33. H.J. Drescher, M. Hladik, S. Ostapchenko, T. Pierog, K. Werner, Phys. Rep. 350, 93 (2001). https://doi.org/10.1016/S0370-1573(00)00122-8

    Article  ADS  Google Scholar 

  34. T. Pierog, K. Werner, Nucl. Phys. B Proc. Suppl. 196, 102 (2009). https://doi.org/10.1016/j.nuclphysbps.2009.09.017. Proceedings of the XV International Symposium on Very High Energy Cosmic Ray Interactions (ISVHECRI 2008)

  35. K. Werner, F.M. Liu, T. Pierog, Phys. Rev. C 74, 044902 (2006). https://doi.org/10.1103/PhysRevC.74.044902

    Article  ADS  Google Scholar 

  36. K. Werner, Phys. Rev. Lett. 98, 152301 (2007). https://doi.org/10.1103/PhysRevLett.98.152301

    Article  ADS  Google Scholar 

  37. T. Sjöstrand, S. Ask, J.R. Christiansen, R. Corke, N. Desai, P. Ilten, S. Mrenna, S. Prestel, C.O. Rasmussen, P.Z. Skands, Comput. Phys. Commun. 191, 159 (2015). https://doi.org/10.1016/j.cpc.2015.01.024

    Article  ADS  Google Scholar 

  38. A.B. Kaidalov, K.A. Ter-Martirosian, Sov. J. Nucl. Phys. 39, 979 (1984)

    Google Scholar 

  39. S. Ostapchenko, AIP Conf. Proc. 928, 118 (2007). https://doi.org/10.1063/1.2775904

    Article  ADS  Google Scholar 

  40. R.S. Fletcher, T.K. Gaisser, P. Lipari, T. Stanev, Phys. Rev. D 50, 5710 (1994). https://doi.org/10.1103/PhysRevD.50.5710

    Article  ADS  Google Scholar 

  41. G. Pancheri, Y. Srivastava, Phys. Lett. B 159(1), 69 (1985). https://doi.org/10.1016/0370-2693(85)90121-2

    Article  ADS  Google Scholar 

  42. G. Pancheri, Y. Srivastava, Phys. Lett. B 182(2), 199 (1986). https://doi.org/10.1016/0370-2693(86)91577-7

    Article  ADS  Google Scholar 

  43. H.U. Bengtsson, T. Sjöstrand, Comput. Phys. Commun. 46(1), 43 (1987). https://doi.org/10.1016/0010-4655(87)90036-1

    Article  ADS  Google Scholar 

  44. T. Söstrand, Int. J. Mod. Phys. A 3(4), 751 (1988). https://doi.org/10.1142/S0217751X88000345

    Article  ADS  Google Scholar 

  45. K.K. Olimov, S.Z. Kanokova, K. Olimov, K.G. Gulamov, B.S. Yuldashev, S.L. Lutpullaev, F.Y. Umarov, Mod. Phys. Lett. A 35(14), 2050115 (2020). https://doi.org/10.1142/S0217732320501151

    Article  ADS  Google Scholar 

  46. I.U. Bashir, S. Uddin, J. Exp. Theor. Phys. 124, 429 (2017)

    Article  ADS  Google Scholar 

  47. M. Waqas, G. Peng, F.H. Liu, J. Phys. G 48, 075108 (2021). https://doi.org/10.1088/1361-6471/abdd8d

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Abdul Wali Khan University Mardan for providing all possible facilities. We would also like to acknowledge the support of Ajman University Internal Research Grant No. DGSR Ref. 2021-IRG-HBS-12.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Muhammad Ajaz or Muhammad Waqas.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest regarding the publication of this paper. The funders had no role in the design of the study; in the collection, analyses or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ajaz, M., Waqas, M., Li, LL. et al. Bulk properties of the medium in comparison with models’ predictions in pp collisions at 13 TeV. Eur. Phys. J. Plus 137, 592 (2022). https://doi.org/10.1140/epjp/s13360-022-02805-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-02805-5

Navigation