Skip to main content

Advertisement

Log in

Optimization design of mode-locked laser and compression system based on similaritons

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

To obtain high-quality ultra-short optical pulses by compressing similaritons generated from similaritons mode-locked fiber laser systems, this paper firstly investigates the properties of the laser systems based on a distributed method. By defining the mode-locked pulse criterion and the self-similar coefficient, the influence of gain saturation energy, net dispersion, and the mode-locked modulation depth of saturable absorber on similaritons is described quantitatively. Then, the optimization of the similariton laser system is designed based on the revealed internal relationship between system parameters and output similaritons. Finally, the similariton laser system structure is optimized by using two saturable absorbers placed in series, each with a modulation depth of 0.53, resulting in achieving a high-quality similariton output from self-similar mode-locked fiber laser with a maximum output power of 297.4381 W, full-widths at half-maxima of 6.4082 ps, energy of 1316.9296 pJ and self-similar coefficient of 0.0498.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The authors declare that all datasets supporting the findings of this study are available within the article.

References

  1. M.E. Fermann, V.I. Kruglov, B.C. Thomsen, J.M. Dudley, J.D. Harvey, Phys. Rev. Lett. 84, 6010 (2000)

    Article  ADS  Google Scholar 

  2. M. Soljacic, M. Segev, Statistical physics, plasmas, fluids, and related interdisciplinary topics. Phys. Rev. E 61, (2000)

  3. S. Boscolo, S.K. Turitsyn, V.Y. Novokshenov, J.H.B. Nijhof, Theor. Math. Phys. 133, 1647–1656 (2002)

    Article  Google Scholar 

  4. V. Kruglov, A. Peacock, J. Harvey, Phys. Rev. Lett. 90, 113902 (2003)

    Article  ADS  Google Scholar 

  5. V.I. Kruglov, A.C. Peacock, J.D. Harvey, J.M. Dudley, J. Opt. Soc. Am. B. 19, 461–469 (2002)

    Article  ADS  Google Scholar 

  6. F. Christophe, M. Guy, B. Cyril, D. John, Opt. Express 11, 1547–1552 (2003)

    Article  Google Scholar 

  7. H. Toshihiko, N. Masataka, Opt. Lett. 29, 498–500 (2004)

    Article  Google Scholar 

  8. Q. Zhang, H. Li, L. Wu, J. Gao, Eur. Phys. J. D 73, 1–9 (2019)

    Article  Google Scholar 

  9. Q. Zhang, Opt. Quantum Electr. 53, 1–12 (2021)

    Article  Google Scholar 

  10. F. Ilday, J. Buckley, W. Clark, F. Wise, Phys. Rev. Lett. 92, 213902 (2004)

    Article  ADS  Google Scholar 

  11. J. Buckley, F. Wise, F. Ilday, T. Sosnowski, Opt. Lett. 30, 1888–9180 (2005)

    Article  ADS  Google Scholar 

  12. A. Chong, J. Buckley, W. Renninger, F. Wise, Opt. Express 14, 10095–100100 (2006)

    Article  ADS  Google Scholar 

  13. B.G. Bale, O.G. Okhitnikov, S.K. Turitsyn, Fiber Lasers (Wiley, New Jersey, 2012), pp. 135–175

    Book  Google Scholar 

  14. Z.C. Luo, M. Liu, H. Liu, X.W. Zheng, A.P. Luo, C.J. Zhao, H. Zhang, S.C. Wen, W.C. Xu, Opt. Lett. 38, 5212–5215 (2013)

    Article  ADS  Google Scholar 

  15. Z.Y. Huang, Y.X. Leng, D. Ye, Chin. Phys. B 23, 228–232 (2014)

    Google Scholar 

  16. T.S. Raju, P.K. Panigrahi, Phys. Rev. A 81, 043820 (2010)

    Article  ADS  Google Scholar 

  17. S. Lefrancois, C.-H. Liu, M.L. Stock, T.S. Sosnowski, A. Galvanauskas, F.W. Wise, Opt. Lett. 38, 43–45 (2013)

    Article  ADS  Google Scholar 

  18. P. Biswas, B.P. Pal, A. Biswas, S. Ghosh, IEEE Photonics J. 9, 1–12 (2017)

    Article  Google Scholar 

  19. L.Q. Zhang, Z. Tian, N.K. Chen, K.T.V. Grattan, Y.C. Yao, B.M.A. Rahman, X.H. Li, C.K. Yao, H.L. Han, H.C. Chui, S.K. Liaw, IEEE Access 8, 115263–115272 (2020)

    Article  Google Scholar 

  20. X. Liu, M. Närhi, D. Korobko, R. Gumenyuk, Opt. Express 29, 34977–34985 (2021)

    Article  ADS  Google Scholar 

  21. Y.Q. Du, X.W. Shu, IEEE Photonics J. 10, 1–11 (2018)

    Google Scholar 

  22. Q.F. Zhang, H.Z. Li, L.M. Wu, J. Gao, G.T. Wang, Y.H. Deng, Opt. Quantum Electr. 51, (2019)

Download references

Acknowledgments

QF Zhang would like to acknowledge the research grant from the National Natural Science Foundation of China [Grant Numbers 61705045, 52075106, 52175457] and Foshan-Guangdong University of Technology Research Institute Innovation and Entrepreneurship Talent Team Program Project [Grant Number 20191108].

Funding

This work was supported by the National Natural Science Foundation of China [grant numbers 61705045, 52075106, 52175457] and Foshan-Guangdong University of Technology Research Institute Innovation and Entrepreneurship Talent Team Program Project [grant number 20191108].

Author information

Authors and Affiliations

Authors

Contributions

QFZ and MLL prepared the initial draft. LYP, LMW, ZHG and CBC discussed the results. JG, YHD and GTW took part in English writing of the manuscript. All authors contributed to manuscript preparation.

Corresponding author

Correspondence to Qiaofen Zhang.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Li, M., Gao, J. et al. Optimization design of mode-locked laser and compression system based on similaritons. Eur. Phys. J. Plus 137, 739 (2022). https://doi.org/10.1140/epjp/s13360-022-02953-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-02953-8

Navigation