Skip to main content
Log in

Higher-order topological matter and fractional chiral states

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We develop a chiral anomalous fermion hamiltonian proposal to study the higher-order topological (HOT) phase with chiral symmetry \(\mathcal {C}\) fractionalized like \(\mathcal {C}_{x}\mathcal {C}_{y}\mathcal {C}_{z}\). First, we solve the \(\mathcal {C}\)-chiral symmetry constraint for eight band models and describe those induced by the partial \(\mathcal {C}_{i}\)’s. Then, we determine the explicit expression of fractional states characterising HOT matter and comment on the relationships amongst them and with the standard Altland–Zirnbauer gapless modes. We also give characteristic properties of the gapless fractional states and compute their contribution to the topological index of the chiral model. The findings of this work are shown to be crucial for investigating and handling high order topological phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. E. Witten, Fermion path integrals and topological phases. Rev. Mod. Phys. 88, 35001 (2016)

    Article  Google Scholar 

  2. E. Witten, Three lectures on topological phases of matter. La Rivista del Nuovo Cimento 39, 313–370 (2016)

    ADS  Google Scholar 

  3. C.-K. Chiu, J.C.Y. Teo, A.P. Schnyder, S. Ryu, Classification of topological quantum matter with symmetries. Rev. Mod. Phys. 88, 035005 (2016)

    Article  ADS  Google Scholar 

  4. S. Ryu et al., Topological insulators and superconductors: tenfold way and dimensional hierarchy. New J. Phys. 12, 065010 (2010)

    Article  ADS  Google Scholar 

  5. C.G. Callan Jr., J.A. Harvey, Anomalies and fermion zero-modes on Strings and domain walls. Nucl. Phys. B 250, 427 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  6. X. Chen, Z.-C. Gu, Z.-X. Liu, X.-G. Wen, Symmetry protected topological orders and the group cohomology of their symmetry group. Phys. Rev. B 87, 155114 (2013)

    Article  ADS  Google Scholar 

  7. D. S. Freed, Anomalies and invertible field theories, arXiv:1404.7224

  8. E.H. Saidi, Gapped gravitinos, isospin \(1/2\) particles and \(N=2\) partial breaking. Prog. Theor. Exp. Phys. (2019), arXiv:1812.04509

  9. A. Borici, Creutz fermions on an orthogonal lattice. Phys. Rev. D 78, 074504 (2008)

    Article  ADS  Google Scholar 

  10. P.F. Bedaque, M.I. Buchoff, B.C. Tiburzi, A. Walker-Loud, Search for Fermion Actions on Hyperdiamond Lattices. Phys. Rev. D 78, 017502 (2008)

    Article  ADS  Google Scholar 

  11. M. Creutz, T. Kimura, T. Misumi, Aoki phases in the lattice Gross–Neveu model with flavored mass terms. Phys. Rev. D 83, 094506 (2011)

    Article  ADS  Google Scholar 

  12. L.B. Drissi, H. Mhamdi, E.H. Saidi, Anomalous quantum hall effect of 4D graphene in background fields. JHEP 10, 026 (2011)

    Article  ADS  MATH  Google Scholar 

  13. L.B. Drissi, E.H. Saidi, A signature index for third order topological insulators. J. Phys: Cond. Matt 32(36), 365704 (2020)

    Google Scholar 

  14. B. Ozyilmaz et al., Phys. Rev. Lett. 99, 166804 (2007)

    Article  ADS  Google Scholar 

  15. R. Jackiw, A.I. Milstein, S.-Y. Pi, I.S. Terekhov, Phys. Rev. B 80, 033413 (2009)

    Article  ADS  Google Scholar 

  16. L.B. Drissi, E.H. Saidi, Dirac zero modes in hyperdiamond model. Phys. Rev. D 84, 014509 (2011)

    Article  ADS  Google Scholar 

  17. J.-A. Yan, L. Xian, M.Y. Chou, Phys. Rev. Lett. 103, 086802 (2009)

    Article  ADS  Google Scholar 

  18. K.S. Novoselov et al., Nature 438, 197–200 (2005)

    Article  ADS  Google Scholar 

  19. L.B. Drissi, E.H. Saidi, M. Bousmina, Electronic properties and hidden symmetries of graphene. Nucl. Phys. B 829, 3 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. T. Kimura, T. Misumi, Lattice fermions based on higher-dimensional hyperdiamond lattices. Prog. Theor. Phys. 123, 63–78 (2010)

    Article  ADS  MATH  Google Scholar 

  21. L.B. Drissi, E.H. Saidi, M. Bousmina, Four dimensional graphene. Phys. Rev. D 84, 014504 (2011)

    Article  ADS  Google Scholar 

  22. Y. Fujimoto, K. Hasegawa, K. Nishiwaki, M. Sakamoto, K. Tatsumi, Supersymmetry in 6d dirac action. Prog. Theor. Exp. Phys. 2017(7), 073B03 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  23. W.A. Benalcazar, B.A. Bernevig, T.L. Hughes, Quantized electric multipole insulators. Science 357, 61 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. W.A. Benalcazar, B.A. Bernevig, T.L. Hughes, Electric multipole moments, topological multipole moment pumping, and chiral hinge states in crystalline insulators. Phys. Rev. B 96, 245115 (2017)

    Article  ADS  Google Scholar 

  25. C.-K. Chiu, J.C.Y. Teo, A.P. Schnyder, S. Ryu, Classification of topological quantum matter with symmetries. Rev. Mod. Phys. 88, 035005 (2016)

    Article  ADS  Google Scholar 

  26. E. Khalaf, H.C. Po, A. Vishwanath, H. Watanabe, Symmetry indicators and anomalous surface states of topological crystalline insulators. Phys. Rev. X 8, 031070 (2018)

    Google Scholar 

  27. M. Geier, L. Trifunovic, M. Hoskam, P.W. Brouwer, Second-order topological insulators and superconductors withan order-two crystalline symmetry. Phys. Rev. B 97, 205135 (2018)

    Article  ADS  Google Scholar 

  28. L. Trifunovic, P.W. Brouwer, Higher-order bulk-boundary correspondence for topological crystalline phases. Phys. Rev. X9, 11012 (2019)

    Article  Google Scholar 

  29. Z. Song, Z. Fang, C. Fang, (d-2)-dimensional edge states of rotation symmetry protected topological states. Phys. Rev. Lett. 119, 246402 (2017)

    Article  ADS  Google Scholar 

  30. W.A. Benalcazar, T. Li, T.L. Hughes, Quantization of fractional corner charge in Cn-symmetric higher-order topologicalcrystalline insulators. Phys. Rev. B 99, 245151 (2019)

    Article  ADS  Google Scholar 

  31. G. Van Miert, C. Ortix, Higher-order topological insula-tors protected by inversion and rotoinversion symmetries. Phys. Rev. B 98, 081110 (2018)

    Article  ADS  Google Scholar 

  32. N. Bultinck, B.A. Bernevig, M.P. Zaletel, Three-dimensional superconductors with hybrid higher-order topology. Phys. Rev. B 99, 125149 (2019)

    Article  ADS  Google Scholar 

  33. J.-H. Zheng, W. Hofstetter, Topological invariant for two-dimensional open systems. Phys. Rev. B 97, 195434 (2018)

    Article  ADS  Google Scholar 

  34. J. Langbehn, Y. Peng, L. Trifunovic, F. von Oppen, P.W. Brouwer, Reflection-symmetric second-order topological insulators and superconductors. Phys. Rev. Lett. 119, 246401 (2017)

    Article  ADS  Google Scholar 

  35. D. Călugăru, V. Juričić, B. Roy, Higher-order topological phases: a general principle of construction. Phys. Rev. B 99, 041301 (2019)

    Article  ADS  Google Scholar 

  36. R. Kobayashi, Y.O. Nakagawa, Y. Fukusumi, M. Oshikawa, Scaling of the polarization amplitude in quantum many-body systems in one dimension. Phys. Rev. B 97, 165133 (2018)

    Article  ADS  Google Scholar 

  37. B. Kang, K. Shiozaki, G.Y. Cho, Many-body order parameters for multipoles in solids. Phys. Rev. B 100, 245134 (2019)

    Article  ADS  Google Scholar 

  38. Y. You, T. Devakul, F.J. Burnell, T. Neupert, Higher-order symmetry-protected topological states for interacting bosons and fermions. Phys. Rev. B 98, 235102 (2018)

    Article  ADS  Google Scholar 

  39. O. Dubinkin, T.L. Hughes, Higher-order bosonic topological phases in spin models. Phys. Rev. B 99, 235132 (2019)

    Article  ADS  Google Scholar 

  40. S. Fubasami, T. Mizoguchi, Y. Hatsugai, Sequential quantum phase transitions in J1–J2 Heisenberg chains with integer spins (S \({>}1\)): Quantized Berry phase and valence-bond solids. Phys. Rev. B 100, 014438 (2019)

    Article  ADS  Google Scholar 

  41. N. Okuma, M. Sato, K. Shiozaki, Topological classification under nonmagnetic and magnetic point group symmetry: Application of real-space Atiyah-Hirzebruch spectral sequence to higher-order topology. Phys. Rev. B 99, 085127 (2019)

    Article  ADS  Google Scholar 

  42. M. Rodriguez-Vega, A. Kumar, B. Seradjeh, Higher-order Floquet topological phases with corner and bulk bound states. Phys. Rev. B 100, 085138 (2019)

    Article  ADS  Google Scholar 

  43. M. Ezawa, Higher-order topological insulators and semimetals on the breathing Kagome and pyrochlore lattices. Phys. Rev. Lett. 120, 026801 (2018)

    Article  ADS  Google Scholar 

  44. H. Araki, T. Mizoguchi, Y. Hatsugai, Z.Q. Berry, Phase for higher-order symmetry-protected topological phases. Phys. Rev. Res. 2, 012009 (2020)

    Article  Google Scholar 

  45. T. Fukui, A Dirac fermion model associated with second order topological insulator. Phys. Rev. B 99, 165129 (2019)

    Article  ADS  Google Scholar 

  46. F.K. Kunst, G. Miert, E.J. Bergholtz, Lattice models with exactly solvable topological hinge and corner states. Phys. Rev. B 97, 241405(R) (2018)

    Article  ADS  Google Scholar 

  47. L.B. Drissi, E.H. Saidi, Domain walls in topological tri-hinge matter. Eur. Phys. J. Plus (2021) (accepted)

  48. R. Jackiw, P. Rossi, Zero modes of the vortex-fermion system, Nucl. Phys. B 190 (1981)

  49. J.C.Y. Teo, C.L. Kane, Topological defects and gapless modes in insulators and superconductors. Phys. Rev. B 82, 115120 (2010)

    Article  ADS  Google Scholar 

  50. E.H. Saidi, O. Fassi-Fehri, M. Bousmina, Topological aspects of fermions on hyperdiamond. J. Math. Phys. 53, 072304 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  51. E.H. Saidi, Twisted 3D N=4 supersymmetric YM on deformed A3 lattice. J. Math. Phys. 55, 012301 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. W.P. Su, J.R. Schrieffer, A.J. Heeger, Solitons in polyacetylene. Phys. Rev. Lett. 42, 1698 (1979)

    Article  ADS  Google Scholar 

  53. S. Lieu, Topological phases in the non-Hermitian Su–Schrieffer–Heeger model. Phys. Rev. B 97, 045106 (2018)

    Article  ADS  Google Scholar 

  54. C. Callias, Axial anomalies and index theorems on open spaces. Commun. Math. Phys. 62, 213 (1978)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  55. E.J. Weinberg, Index calculations for the fermion-vortex system. Phys. Rev. D 24 (1981)

  56. A.J. Niemi, G.W. Semenoff, Spectral asymmetry on an open space. Phys. Rev. D 30, 809 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  57. A.J. Niemi, G.W. Semenoff, Fermion number fractionization in quantum field theory. Phys. Rep. 135, 99 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  58. T. Fukui, T. Fujiwara, Topological stability of majorana zero modes in superconductor-topological insulator systems. J. Phys. Soc. Jpn. 79, 033701 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Professors Lalla Btissam Drissi and El Hassan Saidi would like to acknowledge “Académie Hassan II des Sciences et Techniques-Morocco” for financial support. They thank also Felix von Oppen for stimulating discussions. L. B. Drissi acknowledges the Alexander von Humboldt Foundation for financial support via the Georg Forster Research Fellowship for experienced scientists (Ref 3.4-MAR-1202992).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. B. Drissi.

Appendix

Appendix

In this appendix, which is organised in four parts (A, B, C, D), we give some useful details regarding the topological chiral model studied in this paper. First, we describe some known results on 3D HOT matter with focus on the corner states (Appendix-A). Then, we show how the eight band model we have studied in this work is a minimal model (Appendix-B). We take this occasion to draw the main line to build non minimal models in 3D. After that, we describe how to engineer the matter couplings in the real lattice (Appendix-C). We end this appendix by giving a comment on what we called fractional (1/3 and 2/3) symmetries in the main text (Appendix-D).

1.1 Appendix A: 3D HOT matter and corner states

We begin by recalling that some facts about 3D topological AZ matter and 3D HOT matter. Three dimensional topological matter of the AZ table has some unified aspects; in particular: \(\left( 1\right)\) A real 3D lattice with two periodic boundaries and one open direction. For the example of cubic matter, one can imagine the periodic boundaries as given by the x- and y- directions and the open one by the z- dimension. \(\left( 2\right)\) Gapped states in the 3D bulk but gapless states on the boundary surface. In other words, 3D topological AZ matter is characterised by gapped bulk states and gapless surface states.

Regarding the 3D HOT we studied in this paper, the D/D-1 correspondence is relaxed to D/D-3. Seen that here D=3, the topological boundary states are then given by 0D states or corners states. This picture corresponds to the situation where all the three real (x,y,z) directions of the 3D material are open. In this case, the boundary surface surrounding the cubic volume is a non-regular surface in the sense it is made of: \(\left( i\right)\) 6 types of 2D faces F namely: the upper face F\(_{xy}^{+}\) and the bottom face F\(_{xy}^{-}\); the front F\(_{yz}^{+}\) and the behind F\(_{yz}^{-}\); left F\(_{zx}^{+}\) and the right F\(_{zx}^{-}\). \(\left( ii\right)\) 12 line edges given by: 4 segments in x-direction, 4 segments in y-direction and 4 segments in z-direction. \(\left( iii\right)\) 8 corners given by the intersections of line edges (or also by intersections of three normal faces). These 8 corners are particularly interesting for us as they host the gapless states of HOT matter we are studying in this paper. Being gapless, these corner states obey massless Dirac-like equation \(D\psi _{corner}=0\) where D the Dirac-like operator which in our study is given by eqs(47) and (50). The solutions of this equation is studied in the main text.

1.2 Appendix B: Chiral multi-bands

The chiral eight band model which we have studied in this paper is a minimal 3D model that extends the well known SSH model with open boundary. It describes gapless corner states of 3D HOT matter. To see the minimality feature, it is interesting to recall a known result on Dirac-like matter in diverse space dimensions. Because of the Gamma matrices of the Dirac-like Hamiltonian, the number N of bands is quantized like \(n\times 2^{d}\) where \(2^{d}\) is the number of components of each Dirac-like field \(\boldsymbol{\psi}\) and n referring to the number of matter fields (the number of spinors). This relation means that for \(d=1,\) corresponding to SSH, the number N=2n with n for conduction band and n for valence band. For the d=2 and the d=3 extensions of SSH, the number of bands is, respectively, given by \(n\times 2^{2}=4n\) and \(n\times 2^{3}=8n\). So, the eight band 3D model studied in present paper is a minimal model (n=1). However, the generalisation of our modeling to chiral 8n bands goes straight forwardly. The basic idea in the construction consists in replacing one of the 2\(\times\)2 Pauli matrices by the following generalised \(2n\times 2n\) matrices. For example, by replacing \(\rho _{x},\) \(\rho _{y},\) \(\rho _{z}\) by the following \(2n\times 2n\) matrices \(R_{x},\) \(R_{y},\) \(R_{z}\).

$$\begin{aligned} R_{x}=\left( \begin{array}{cc} 0 &{} I_{n} \\ I_{n} &{} 0 \end{array} \right) ,\quad R_{y}=\left( \begin{array}{cc} 0 &{} -iI_{n} \\ iI_{n} &{} 0 \end{array} \right) ,\quad R_{z}=\left( \begin{array}{cc} I_{n} &{} 0 \\ 0 &{} -I_{n} \end{array} \right) \end{aligned}$$
(B1)

where \(I_{n}\) is the \(n\times n\) identity matrix.

1.3 Appendix C: Couplings in real lattice

The eight band Hamiltonian (35) is expressed in the reciprocal space. This hamiltonian can be also expressed in the real space. The derivation of the real interactions leading to (35) is commented below. First, we consider the Dirac-like matter field \(\boldsymbol{\psi}\left( \mathbf {r}_{i}\right) \equiv \boldsymbol{\psi}_{\mathbf {r}_{i}}\) at site positions \(\mathbf {r}_{i}\) (for short \(\mathbf {r}\)) of the real 3D cubic lattice. This matter field has eight components \(\left( \psi _{1\mathbf {r}},\ldots ,\psi _{8\mathbf {r}}\right) .\) Then, we denote the nearest neighbours to \(\mathbf {r}\) by \(\mathbf {r+a}_{j}\) with the three cubic vectors as usual; that is \(\mathbf {a}_{x}=ae_{x},\) \(\mathbf {a}_{y}=ae_{y},\) \(\mathbf {a}_{z}=ae_{z}.\) After that, we use the \(\Upsilon ^{j}\) and \(\Lambda ^{j}\) matrices of eq(7) to couple the nearest neighbours \({{\psi }}_{\mathbf {r}}\) and \({{\psi }}_{\mathbf {r+a} _{j}}\) as follows

$${\psi }_{\mathbf {r}}^{\dag}\Upsilon ^{i}{\psi }_{\mathbf { r+a}_{j}},\;{\psi }_{\mathbf {r+a}_{j}}^{\dag }\Upsilon ^{j} {\psi }_{\mathbf {r}};\;{\psi }_{\mathbf {r}}^{\dag }\Lambda ^{j}{\psi }_{\mathbf {r+a}_{j}},\;{\psi }_{ \mathbf {r+a}_{j}}^{\dag }\Lambda ^{j}{\psi }_{\mathbf {r}}$$
(C.1)

In these couplings, the \(\Upsilon ^{x}\) and \(\Lambda ^{x}\) are linked with the direction \(\mathbf {a}_{x}\); the same thing is done for the other matrices. Next, we engineer: \(\left( 1\right)\) the terms in \(\sin k_{j}\) by using pseudo-real couplings like

$$\begin{aligned} h_{1}=-i\sum \limits _{\mathbf {r},\mathbf {a}_{j}}t_{j}\left[ {\psi }_{ \mathbf {r}}^{\dag }\Upsilon ^{i}{\psi }_{\mathbf {r+a}_{j}}-{ \psi }_{\mathbf {r+a}_{j}}^{\dag }\Upsilon ^{j}{\psi }_{\mathbf {r}} \right] \end{aligned}$$
(72)

and \(\left( 2\right)\) the terms in \(\cos k_{j}\) by using real coupling as follows \(h_{2}=\sum t_{j}^{\prime }({\psi }_{\mathbf {r}}^{\dag }\Lambda ^{j}{\psi }_{\mathbf {r+a}_{j}}+{\psi }_{\mathbf {r+a} _{j}}^{\dag }\Lambda ^{j}{\psi }_{\mathbf {r}}).\) The terms in \(\Delta _{j}\) are given by \(h_{3}=\sum \Delta _{j} \boldsymbol{\psi}_{\mathbf {r+a} _{j}}^{\dag }\Lambda ^{j} \boldsymbol{\psi}_{\mathbf {r+a}_{j}}.\)

1.4 Appendix D: “Fractional” symmetries

Here we give a group theoretical description of the chiral symmetry \(\Gamma _{7}=\mathcal {C}=\mathcal {C}_{x}\mathcal {C}_{y}\mathcal {C}_{z}\) acting on the hamiltonian as in eq(1) and on the functions \(f_{x}\) and \(g_{x}\) like in (30). The action of the chiral operator \(\mathcal {C}_{x}\mathcal {C}_{y} \mathcal {C}_{z}\) on the six components \(f_{x},g_{x};f_{y},g_{y};f_{z},g_{z}\) appearing in the Hamiltonian (26) reads as follows:

$$\begin{aligned} \begin{array}{lllll} \mathcal {C}_{x} &{} : &{} \left( f_{x},g_{x};f_{y},g_{y};f_{z},g_{z}\right) &{} \quad \rightarrow \quad &{} \left( -f_{x},-g_{x};f_{y},g_{y};f_{z},g_{z}\right) \\ \mathcal {C}_{y} &{} : &{} \left( f_{x},g_{x};f_{y},g_{y};f_{z},g_{z}\right) &{} \quad \rightarrow \quad &{} \left( f_{x},g_{x};-f_{y},-g_{y};f_{z},g_{z}\right) \\ \mathcal {C}_{z} &{} : &{} \left( f_{x},g_{x};f_{y},g_{y};f_{z},g_{z}\right) &{} \quad \rightarrow \quad &{} \left( f_{x},g_{x};f_{y},g_{y};-f_{z},-g_{z}\right) \end{array} \end{aligned}$$
(D.1)

By using group theory language, each transformation \(\mathcal {C}_{i}\) generates a symmetry group \(\mathbb {Z}_{2}\) with elements as \(\left\{ I_{id},-I_{id}\right\}\). So, the combination of the three transformations (A1) generate the discrete group product \(\mathbb {Z} _{2}\times \mathbb {Z}_{2}\times \mathbb {Z}_{2}\). For convenience, we denote this symmetry group like \(\mathbb {Z}_{2}^{x}\times \mathbb {Z}_{2}^{y}\times \mathbb {Z}_{2}^{z}\) where we have exhibited the x- , y- and z- directions. The first \(\mathbb {Z}_{2}^{x}\) is generated by \(\mathcal {C}_{x}\), the second by \(\mathcal {C}_{y}\) and the third by \(\mathcal {C}_{z}\). Seen that \(\mathbb {Z}_{2}\times \mathbb {Z}_{2}\times \mathbb {Z}_{2}\) is the full chiral symmetry, the sub-symmetry \(\mathbb {Z}_{2}^{x}\) generated by \(\mathcal {C}_{x}\) is then a particular sub-symmetry (1/3 symmetry for short). Similarly, the sub-summetry \(\mathbb {Z} _{2}^{x}\times \mathbb {Z}_{2}^{y}\) generated by the composition \(\mathcal {C}_{x}\mathcal {C}_{y}\) is 2/3 chiral symmetry of the full \(\mathcal { C}\). Notice that similar things can be also said about the other 1/3 symmetries, namely \(\mathbb {Z}_{2}^{y}\) and \(\mathbb {Z}_{2}^{z}\) as well as about the 2/3 symmetries \(\mathbb {Z}_{2}^{x}\times \mathbb {Z} _{2}^{z}\) and \(\mathbb {Z}_{2}^{y}\times \mathbb {Z}_{2}^{z}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Drissi, L.B., Lounis, S. & Saidi, E.H. Higher-order topological matter and fractional chiral states. Eur. Phys. J. Plus 137, 796 (2022). https://doi.org/10.1140/epjp/s13360-022-02975-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-02975-2

Navigation