Skip to main content
Log in

Effects of L-shaped fins on cooling an electronic heat sink fitted under magnetic field of CNT–water/ethylene glycol nanoliquid

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

A Correction to this article was published on 22 August 2022

This article has been updated

Abstract

The aim of this research is to investigate numerically the efficiency of employing CNT–water/ethylene glycol nanofluid into an inclined square box heat dissipator featured with L-shaped fins beneath the impact of Lorentz powers, taking into consideration the nanoliquid’s radiative effect. The study is constructed using the Comsol Multiphysics tool. The effects of Rayleigh number (\(10^{3} \le\) Ra \(\le 10^{6}\)), Hartmann number (0 \(\le\) Ha \(\le\) 40), the radiative emitting coefficient (0 \(\le R_{d} \le\) 2), the length (0.4 \(\le\) L \(\le\) 0.7) and width (0.01 \(\le \delta \le\) 0.07) of L-shaped fins, the heat dissipator box inclination (\(0^{^\circ } \le \gamma \le 90^{^\circ }\)) and the L-shaped fins dispositions are all analyzed as variables that affect the heat waste proficiency. A comparison between classical and L-shaped fins is confirmed. The data reveal that expanding the amount of Rayleigh and also the radiative element enhances convection cooling rate. Whenever radiative emission is maintained, the action of Lorentz strengths on slowing the convection cooling rate is mitigated. Furthermore, heightening both the L-shaped fins length and width enhances more the convection cooling proficiency excluding the L = 0.4 and \(\delta\) = 0.07 scenario. Relying on the chamber slant angle, manifold scenarios are unearthed in terms of the excellent L-shaped fins disposition. The L-shaped fins dissipate heat more effectively than classical one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data availability

Data are available on request from the authors.

Change history

Abbreviations

\(B_{0}\) :

Magnetic field intensity (T)

Cp :

Specific heat (J kg \({\text{K}}^{ - 1}\))

D :

L-shaped fins interdistance (m)

g :

The gravitational acceleration (m \({\text{s}}^{ - 2}\))

H :

Chamber extent (m)

Ha:

Hartmann parameter

k :

Thermal conductivity \(({\text{w m}}^{ - 1} {\text{ K}}^{ - 1}\))

L :

L-shaped fins length (m)

N :

Number of fins

\({\text{Nu}}_{\text{l}}\) :

Local Nusselt indicator

\({\text{Nu}}_{m}\) :

Typical Nusselt indicator

Pr:

Prandtl parameter

Ra:

Rayleigh parameter

\(R_{d}\) :

Radiative emitting coefficient

T :

Dimensional temperature (\({\text{K}}\))

T* :

Non-dimensional temperature

u, v :

Constituents of celerity onward the (x, y) axis

u*, v* :

Non-dimensional constituents of celerity onward the (x, y) axis

W :

L-shaped fins thickness (m)

\(\alpha\) :

Thermal diffusivity (\({\text{m}}^{2} {\text{ s}}^{ - 1}\))

\(\Delta T\) :

Temperature difference, \(T_{h} - T_{{c{ }}} \;\left( {\text{K}} \right)\)

σ :

Electrical conductivity (\({\text{Am V}}^{ - 1}\))

μ :

Dynamic viscosity, \({\text{kg m}}^{ - 1} {\text{ s}}^{ - 1}\)

\(\varphi\) :

Nanoparticles quantity

β :

Thermal expansion quotient \(\left( {{\text{k}}^{ - 1} } \right)\)

ρ :

Primary fluid denseness (kg \({\text{m}}^{ - 3}\))

ν :

Kinematic viscosity (\({\text{m}}^{2} /{\text{s}}\))

\(\gamma\) :

Chamber slant angle (\(^\circ\))

\(\delta\) :

L-shaped fins width (m)

c:

Cold partition

h:

Hot partition

\({\text{nf}}\) :

Nanoliquid

p:

Nanoparticle

f:

Primary fluid

References

  1. M.B. Ben Hamida, J. Belghaeib, N. Hajji, Numerical study of heat and mass transfer enhancement for bubble absorption process of ammonia water mixture without and with nanofluid. Therm. Sci. 22, 3107–3120 (2018)

    Article  Google Scholar 

  2. M.B. Ben Hamida, J. Belghaeib, N. Hajji, Heat and mass transfer enhancement for falling film absorption process in vertical plate absorber by adding copper nanoparticles. Arab. J. Sci. Eng. 43, 4991–5001 (2018)

    Article  Google Scholar 

  3. C.T. Nguyen, G. Roy, C. Gauthier, N. Galanis, Heat transfer enhancement using Al2O3–water nanofluid for an electronic liquid cooling system. Appl. Ther. Eng. 27, 1501–1506 (2007)

    Article  Google Scholar 

  4. A. Ijam, R. Saidur, Nanofluid as a coolant for electronic devices (cooling of electronic devices). Appl. Ther. Eng. 32, 76–82 (2012)

    Article  Google Scholar 

  5. M. Hatami, D. Jing, Evaluation of wavy direct absorption solar collector (DASC) performance using different nanofluids. J. Mol. Liq. 229, 203–211 (2017)

    Article  Google Scholar 

  6. X. Wang, Y. He, X. Liu, L. Shi, J. Zhu, Investigation of photothermal heating enabled by plasmonic nanofluids for direct solar steam generation. Sol. Ener. 157, 35–46 (2017)

    Article  ADS  Google Scholar 

  7. F. Selimefendigil, H.F. Öztop, Corrugated conductive partition effects on MHD free convection of CNT-water nanofluid in a cavity. Int. J. Heat Mass Trans. 129, 265–277 (2019)

    Article  Google Scholar 

  8. A.A.A.A. Al-Rashed, L. Kolsi, H.F. Oztop, A. Aydi, E.H. Malekshah, N. Abu-Hamdeh, M.N. Borjini, 3D magneto-convective heat transfer in CNT-nanofluid filled cavity under partially active magnetic field. Phys. E Low-Dimen. Syst. Nano 99, 294–303 (2018)

    Article  Google Scholar 

  9. L. Kolsi, A.A.A.A. Al-Rashed, K. Al-Salem, H.F. Oztop, M.N. Borjini, Control of natural convection via inclined plate of CNT-water nanofluid in an open sided cubical enclosure under magnetic field. Int. J. Heat Mass Trans. 111, 1007–1018 (2017)

    Article  Google Scholar 

  10. C. Qi, J. Tang, F. Fan, Y. Yan, Effects of magnetic field on thermo-hydraulic behaviors of magnetic nanofluids in CPU cooling system. Appl. Therm. Eng. 179, 115717 (2020)

    Article  Google Scholar 

  11. N.C. Roy, MHD natural convection of a hybrid nanofluid in an enclosure with multiple heat sources. Alex Eng. J. (2021). https://doi.org/10.1016/j.aej.2021.06.076

    Article  Google Scholar 

  12. M.A. El-Shorbagy, E.A. Algehyne, M. Ibrahim, V. Ali, R. Kalbasi, Effect of fin thickness on mixed convection of hybrid nanofluid exposed to magnetic field-Enhancement of heat sink efficiency. Case Stud. Therm. Eng. 26, 101037 (2021)

    Article  Google Scholar 

  13. C. Qi, K. Li, C. Li, B. Shang, Y. Yan, Experimental study on thermal efficiency improvement using nanofluids in heat sink with heated circular cylinder. Int. Comm. Heat Mass Trans. 114, 104589 (2020)

    Article  Google Scholar 

  14. A.M. Ranjbar, Z. Pouransari, M. Siavashi, Improved design of heat sink including porous pin fins with different arrangements: a numerical turbulent flow and heat transfer study. Appl. Therm. Eng. 198, 117519 (2021)

    Article  Google Scholar 

  15. M.D. Massoudi, M.B. Ben Hamida, M.A. Almeshaal, K. Hajlaoui, The influence of multiple fins arrangement cases on heat sink efficiency of MHD MWCNT-water nanofluid within tilted T-shaped cavity packed with trapezoidal fins considering thermal emission impact. Int. Comm. Heat Mass Trans. 126, 105468 (2021)

    Article  Google Scholar 

  16. T. Ambreen, A. Saleem, H.M. Ali, S.A. Shehzad, C.W. Park, Performance analysis of hybrid nanofluid in a heat sink equipped with sharp and streamlined micro pin-fins. Powder Tech. 355, 552–563 (2019)

    Article  Google Scholar 

  17. N.H. Saeid, Natural convection in a square cavity with discrete heating at the bottom with different fin shapes. Heat Tran. Eng. 39, 154–161 (2018)

    Article  ADS  Google Scholar 

  18. M.K. Aliabadi, S. Deldar, S.M. Hassani, Effects of pin-fins geometry and nanofluid on the performance of a pin-fin miniature heat sink (PFMHS). Int. J. Mech. Sci. 148, 442–458 (2018)

    Article  Google Scholar 

  19. M.D. Massoudi, M.B. Ben Hamida, MHD natural convection and thermal radiation of diamond–water nanofluid around rotating elliptical baffle inside inclined trapezoidal cavity. Eur. Phys. J. Plus 135, 902 (2020)

    Article  Google Scholar 

  20. M.D. Massoudi, M.B. Ben Hamida, Free convection and thermal radiation of a nanofluid inside an inclined L-shaped microelectronic module under the Lorentz forces’ impact. Heat Trans. 50(3), 2849–2873 (2020). https://doi.org/10.1002/htj.22009

    Article  Google Scholar 

  21. M.D. Massoudi, M.B. Ben Hamida, M.A. Almeshaal, Free convection and thermal radiation of nanofluid inside nonagon inclined cavity containing a porous medium influenced by magnetic field with variable direction in the presence of uniform heat generation/absorption. Int. J. Num. Meth. Heat Fluid Flow 31, 933–958 (2020)

    Article  Google Scholar 

  22. M.D. Massoudi, M.B. Ben Hamida, M.A. Almeshaal, Y.A. Rothan, K. Hajlaoui, Numerical analysis of magneto-natural convection and thermal radiation of SWCNT nanofluid inside T-inverted shaped corrugated cavity containing porous medium. Int. J. Num. Meth Heat Fluid Flow (2021). https://doi.org/10.1108/HFF-02-2021-0095

    Article  Google Scholar 

  23. M. Usman, Z.H. Khan, M.B. Liu, MHD natural convection and thermal control inside a cavity with obstacles under the radiation effects. Phys A 535, 122443 (2019)

    Article  MathSciNet  Google Scholar 

  24. M.B. Ben Hamida, K. Charrada, Natural convection heat transfer in an enclosure filled with an Ethylene Glycol-Copper nanofluid under magnetic fields. Num. Heat Trans. Part A 67, 902–920 (2014)

    Article  ADS  Google Scholar 

  25. Z. Li, A.K. Hussein, O. Younis, M. Afrand, S. Feng, Natural convection and entropy generation of a nanofluid around a circular baffle inside an inclined square cavity under thermal radiation and magnetic field effects. Int. Comm. Heat Mass Trans. 116, 104650 (2020)

    Article  Google Scholar 

  26. Z. Li, A.K. Hussein, O. Younis, S. Rostami, W. He, Effect of alumina nano-powder on the natural convection of water under the influence of a magnetic field in a cavity and optimization using RMS: Using empirical correlations for the thermal conductivity and a sensitivity analysis. Int. Commun. Heat Mass Trans. 112, 104497 (2020)

    Article  Google Scholar 

  27. M. Sheikholeslami, T. Hayat, A. Alsaedi, MHD free convection of Al2O3–water nanofluid considering thermal radiation: a numerical study. Int. J. Heat Mass Trans. 96, 513–524 (2016)

    Article  Google Scholar 

  28. K. Hosseinzadeh, S. Roghani, A.R. Mogharrebi, A. Asadi, D.D. Ganji, Optimization of hybrid nanoparticles with mixture fluid flow in an octagonal porous medium by effect of radiation and magnetic field. J. Therm. Anal. Calor. 143, 1413–1424 (2020)

    Article  Google Scholar 

  29. I. Zakaria, W.H. Azmi, W.A.N.W. Mohamed, R. Mamat, G. Najaf, Experimental investigation of thermal conductivity and electrical conductivity of 2 Al2O3 nanofluid in water - ethylene glycol mixture for proton exchange membrane 3 fuel cell application. Int. Commun. Heat Mass Transf. 61, 61–68 (2015)

    Article  Google Scholar 

  30. F. Garoosi, Presenting two new empirical models for calculating the effective dynamic viscosity and thermal conductivity of nanofluids. Powder Tech. 366, 788–820 (2020)

    Article  Google Scholar 

  31. Q.Z. Xue, Model for thermal conductivity of carbon nanotube-based composites. Phys. B 368, 302–307 (2005)

    Article  ADS  Google Scholar 

  32. P. Valipour, R. Moradi, F.S. Aski, CNT-water nanofluid thermal radiation heat transfer over a stretching sheet considering heat generation. J. Moll. Liquids 237, 242–246 (2017)

    Article  Google Scholar 

  33. J. Alsarraf, A. Shahsavar, M. Khaki, R. Ranjbarzadeh, A. Karimipour, M. Afrand, Numerical investigation on the effect of four constant temperature pipes on natural cooling of electronic heat sink by nanofluids: a multifunctional optimization. Adv. Powder Tech. 31, 416–432 (2020)

    Article  Google Scholar 

  34. M. Hatami, Numerical study of nanofluids natural convection in a rectangular cavity including heated fins. J. Mole Liquids 233, 1–8 (2017)

    Article  Google Scholar 

  35. H. Ozoe, K. Okada, The effect of the direction of the external magnetic field on the three dimensional natural convection in a cubical enclosure. Int. J. Heat Mass Trans. 32, 1939–1954 (1989)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Bechir Ben Hamida.

Additional information

Guest editors: A. Karimipour, K. Hooman, A. D’Orazio, R. Kalbasi.

The original online version of this article was revised to adjust the order of affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Massoudi, M.D., Ben Hamida, M.B., Almeshaal, M.A. et al. Effects of L-shaped fins on cooling an electronic heat sink fitted under magnetic field of CNT–water/ethylene glycol nanoliquid. Eur. Phys. J. Plus 137, 843 (2022). https://doi.org/10.1140/epjp/s13360-022-03044-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-03044-4

Navigation