Skip to main content
Log in

Nonlinear generation modes in easy-axis anisotropy ferromagnetic spin chains with nearest-neighbor coupling

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this paper, we consider the Heisenberg ferromagnetic lattices with single-ion easy-axis anisotropy to show the effects of the nearest-neighbor coupling on discrete modulation instability and localized energy in the forbidden gap. We use the multi-scale scheme to establish the nonlinear Schrödinnger equation from where it was carried out the static breather equation together with the threshold amplitude. Thus, one end of the spin chains was submitted to an external periodic boundary. It results that the nearest-neighbor coupling parameter induced instability in the forbidden frequency gap by increasing the amplitude of the plane wave. The most important feature of this investigation is the fact that the driven amplitude is considered below the threshold amplitude and the nonlinear supratransmission phenomenon arises. These outcome shed light on the fact that the Heisenberg ferromagnetic spin chains with a single-ion easy-axis anisotropy could be used to generate both long-lived temporal localized solitons and nonlinear supratransmission phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Availability of data and materials

Not applicable.

Abbreviations

NNC:

Nearest-neighbor coupling

GV:

Group velocity

MI:

Modulation instability

NS:

Numerical simulation

FG:

Forbidden gap

DA:

Driven amplitude

TA:

Threshold amplitude

DF:

Driven frequency

References

  1. R. Lai, S.A. Kiselev, A.J. Sievers, Intrinsic localized spin-wave resonances in ferromagnetic chains with nearest-and next-nearest-neighbor exchange interactions. Phys. Rev. B 56, 5345 (1997)

    Article  ADS  Google Scholar 

  2. L. Kavitha, E. Parasuraman, D. Gopi, A. Prabhu, R.A. Vicencio, Nonlinear nano-scale localized breather modes in a discrete weak ferromagnetic spin lattice. J. Magn. Magn. Mater. 401, 394 (2016)

    Article  ADS  Google Scholar 

  3. B. Tang, G.L. Li, M. Fu, Modulational instability and localized modes in Heisenberg ferromagnetic chains with single-ion easy-axis anisotropy. J. Magn. Magn. Mater. 426, 429 (2017)

    Article  ADS  Google Scholar 

  4. J. Xie, Z. Deng, X. Chang, B. Tang, Discrete modulational instability and bright localized spin wave modes in easy-axis weak ferromagnetic spin chains involving the next-nearest-neighbor coupling. Chin. Phys. B 28, 077501 (2019)

    Article  ADS  Google Scholar 

  5. A. Houwe, P. Djorwe, S. Abbagari, S.Y. Doka, S.G. Nana Engo, Discrete solitons in nonlinear optomechanical array. Chaos Solitons Fractals 154, 111593 (2022)

    Article  MathSciNet  Google Scholar 

  6. A. Maluckov, L. Hadz̄ìevski, B.A. Malomed, Staggered and moving localized modes in dynamical lattices with thecubic-quintic nonlinearity. Phys. Rev. E 77, 036604 (2008)

  7. F.K. Abdullaev, A. Bouketir, A. Messikh, B.A. Umarov, Modulational instability and discrete breathers in the discrete cubic-quintic nonlinear Schrödinger equation. Phys. D 232, 54 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. J.E. Rothenberg, Modulational instability for normal dispersion. Phys. Rev. A 42, 682 (1990)

    Article  ADS  Google Scholar 

  9. F. Geniet, J. Leon, Energy transmission in the forbidden band gap of a nonlinear chain. Phys. Rev. Lett. 89, 134102 (2002)

    Article  ADS  Google Scholar 

  10. R. Khomeriki, Nonlinear band gap transmission in optical waveguide arrays. Phys. Rev. Lett. 92, 063905 (2004)

    Article  ADS  Google Scholar 

  11. R. Khomeriki, S. Lepri, S. Ruffo, Nonlinear supratransmission and bistability in the Fermi–Pasta–Ulam model. Phys. Rev. E 70, 066626 (2004)

    Article  ADS  Google Scholar 

  12. A. Houwe, S. Abbagari, M. Inc, G. Betchewe, S.Y. Doka, T.C. Kofane, Chirped solitons in discrete electrical transmission line. Res. Phys. 18, 103188 (2020)

    Google Scholar 

  13. L.Q. English, S.G. Wheeler, Y. Shen, G.P. Veldes, N. Whitaker, P.G. Kevrekidis, D.J. Frantzeskakis, Backward-wave propagation and discrete solitons in a left-handed electrical lattice. Phys. Lett. A 375, 1242 (2011)

    Article  ADS  Google Scholar 

  14. K. Tse Ve Koon, J. Leon, P. Marquié, P. Tchofo-Dinda, Cutoff solitons and bistability of the discrete inductance–capacitance electrical line: Theory and experiments. Phy. Rev. E, 75, 066604 (2007)

  15. S. Abbagari, A. Houwe, L. Akinyemi, Y. Saliou, T.B. Bouetou, Modulation instability gain and discrete soliton interaction in gyrotropic molecular chain. Chaos Solitons Fractals 160, 112255 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  16. L. Akinyemi, M. Mirzazadeh, K. Hosseini, Solitons and other solutions of perturbed nonlinear Biswas Milovic equation with Kudryashovs law of refractive index. Nonlinear Anal. Model. Control 27, 1 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  17. A. Houwe, A. Souleymanou, L. Akinyemi, S.Y. Doka, M. Inc, Discrete breathers incited by the intra-dimers parameter in microtubulin protofilament array. Eur. Phys. J. Plus 137(4), 1 (2022)

    Article  Google Scholar 

  18. P. Marquie, J.M. Bilbault, M. Remoissenet, Observation of nonlinear localized modes in an electrical lattice. Phys. Rev. E 51, 6127 (1995)

    Article  ADS  Google Scholar 

  19. A.B.T. Motcheyo, M. Kimura, Y. Doi, C. Tchawoua, Supratransmission in discrete one-dimensional lattices with the cubic-quintic nonlinearity. Nonlinear Dyn. 95, 2461 (2019)

    Article  MATH  Google Scholar 

  20. A. Houwe, A. Souleymanou, L. Akinyemi, M. Inc, S.Y. Doka, Wave propagation in discrete cold bosonic atoms zig-zag optical lattice. Eur. Phys. J. Plus 137, 1029 (2022)

    Article  Google Scholar 

  21. J.P. Nguenang, M. Peyrard, A.J. Kenfack, T.C. Kofane, On modulational instability of nonlinear waves in 1D ferromagnetic spin chains. J. Phys.: Condens. Matter 17, 3083 (2005)

    ADS  Google Scholar 

  22. A.L. Lvovsky, B.C. Sanders, W. Tittle, Optical quantum memory. Nature 3, 706 (2009)

    Google Scholar 

Download references

Funding

No funding available for this project.

Author information

Authors and Affiliations

Authors

Contributions

Souleymanou Abbagari was involved in conceptualization, formal analysis, investigation, methodology, writing the original draft, resources and software. Alphonse Houwe was responsible for conceptualization, investigation, methodology, writing the original draft, resources and software. Youssoufa Saliou contributed to reviewing and editing, and formal analysis. Lanre Akinyemi took part in writing, reviewing and editing, validation, methodology, resources and software. Serge Y. Doka participated in writing, reviewing and editing, formal analysis, resources and supervision.

Corresponding authors

Correspondence to Alphonse Houwe or Souleymanou Abbagari.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Not applicable.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Houwe, A., Abbagari, S., Saliou, Y. et al. Nonlinear generation modes in easy-axis anisotropy ferromagnetic spin chains with nearest-neighbor coupling. Eur. Phys. J. Plus 138, 133 (2023). https://doi.org/10.1140/epjp/s13360-023-03754-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-03754-3

Navigation