Skip to main content

Advertisement

Log in

Bouncing behaviours in four dimensional Einstein Gauss-Bonnet gravity with cosmography and observational constraints

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

This manuscript is based on an investigation of bouncing cosmology in a 4D Einstein Gauss-Bonnet gravity. Various bouncing models such as symmetric bounce, matter bounce, super bounce, and oscillatory bounce have been examined. Expressions for energy density, pressure, equation of state parameter have been derived in the most general manner and then reduced to 4D Einstein Gauss-Bonnet gravity for isotropic, homogenous, FLRW cosmos. Physical interpretation of Hubble and deceleration parameters has also been discussed and plotted for each model from non-vanishing scale factors. Non-singular bouncing models indulge in accelerating late-time cosmic acceleration phenomenon. It has been analysed that the Gauss-Bonnet coupling parameter has a lesser contribution to the dynamics of modified gravity while the bouncing parameter has noticeable effects. We have examined various energy conditions and witnessed the violation of strong and null energy conditions in bouncing models. Analytical expressions for jerk and snap parameters have also been calculated in terms of cosmic time and redshift. We have explored bouncing models through specific cosmographic tests to check their validity. Also, through stability analysis, matter bounce becomes the most stable model by increasing the value of the bouncing parameter. To find best-fit values, bouncing models have been constrained with Hubble data set and \(\Lambda\)CDM. We have calculated the values of parameters by applying the least-square fitting method. To make this analysis quantified, we have employed reduced chi-squared method on H(z) data sets for each model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

Data availability statement

No data associated in the manuscript.

References

  1. C.M. Will, Liv. Rev. Rel. 9, 3 (2006)

    Article  Google Scholar 

  2. S.W. Hawking, G.F.R. Ellis, The Large Scale Struc- Ture of Space Time (Cambridge University Press, Cambridge, 1973)

    Book  Google Scholar 

  3. R. Penrose, The role of general relativity. Nuovo Cim. Gravity Collapse. 1, 252 (1969)

    ADS  Google Scholar 

  4. D.J. Gross, E. Witten, Nucl. Phys. B 277, 1 (1986)

    Article  ADS  Google Scholar 

  5. M.C. Bento, O. Bertolami, Phys. Lett. B 368, 198 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  6. B. Zwiebach, Phys. Lett. B 156, 315 (1985)

    Article  ADS  Google Scholar 

  7. D. Garfinkle, G.T. Horowitz, A. Strominger, Phys. Rev. D 43, 3140 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  8. G.W. Gibbons, K. Maeda, Nucl. Phys. B 298, 741 (1988)

    Article  ADS  Google Scholar 

  9. D.G. Boulware, S. Deser, Phys. Rev. Lett. 55, 2656 (1985)

    Article  ADS  Google Scholar 

  10. D. Lovelock, J. Math. Phys. 12, 498 (1971)

    Article  ADS  Google Scholar 

  11. S. Nojiri, S.D. Odintsov, Phys. Let. B 631, 1 (2005)

    Article  ADS  Google Scholar 

  12. S. Nojiri, S.D. Odintsov, O. Gorbunova, J. Phys. A 39, 6627 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  13. T. Chiba, J. Cosmo. Astropart. Phys. 3, 107 (2005)

    Google Scholar 

  14. C. Aïnamon, M.J.S. Houndjo, A.A.L. Ayivi, M.G. Ganiou, A. Kanfon, J. Mod. Phys. 12, 6 (2021)

    Article  Google Scholar 

  15. N.M. Garcia, T. Harko, F.S.N. Lobo, J.P. Mimoso, Phy. Rev. D 83, 104032 (2011)

    Article  ADS  Google Scholar 

  16. M. Sharif, A. Ikram, Eur. Phys. J. C 76, 640 (2016)

    Article  ADS  Google Scholar 

  17. E. Elizalde, R. Myrzakulov, V.V. Obukhov, D. Saez-Gomez, Class. Quant, Grav 27, 095007 (2010)

  18. K. Bamba, S.D. Odintsov, L. Sebastiani, S. Zerbini, Eur. Phys. J. C 67, 295 (2010)

    Article  ADS  Google Scholar 

  19. A. de la Cruz-Dombriz, D. Saez-Gomez, Class. Quantum Gravity 29, 245014 (2012)

    Article  ADS  Google Scholar 

  20. D. Glavan, C. Lin, Phys. Rev. Lett. 124, 081301 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  21. R.P. Woodard, Scholarpedia 10, 32243 (2015)

    Article  Google Scholar 

  22. S.G. Ghosh, R. Kumar, Class. Quantum Gravity 37, 245008 (2020)

    Article  ADS  Google Scholar 

  23. R. A. Konoplya, A. Zhidenko, Phys. Dark Univ. 30, 100697 (2020)

    Article  Google Scholar 

  24. S.W. Wei, Y.X. Liu, Phys. Rev. D 101, 104018 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  25. K. Yang, B. M. Gu, S. W. Weiand Y. X. Liu, Eur. Phys. J. C 80, 662 (2020)

  26. S.G. Ghosh, S.D. Maharaj, Phys. Dark Univ. 30, 100687 (2020)

    Article  Google Scholar 

  27. A. Abdujabbarov, J. Rayimbaev, B. Turimov, F. Atamurotov, Phys. Dark Univ. 30, 100715 (2020)

    Article  Google Scholar 

  28. K. Jafarzade, M. Kord Zangeneh and F.S.N. Lobo, J. Cosmol. Astropart. Phys. 04, 008 (2021)

  29. P.G.S. Fernandes, Phys. Lett. B 805, 135468 (2020)

    Article  MathSciNet  Google Scholar 

  30. S.U. Islam, R. Kumar, S.G. Ghosh, J. Cosmol. Astropart. Phys. 2009, 030 (2020)

    Article  ADS  Google Scholar 

  31. M.S. Churilova, Phys. Dark Univ. 31, 100748 (2021)

    Article  Google Scholar 

  32. X.X. Zeng, H.Q. Zhang, H. Zhang, Eur. Phys. J. C 80, 872 (2020)

    Article  ADS  Google Scholar 

  33. K. Jusufi, A. Banerjee, S.G. Ghosh, Eur. Phys. J. C 80, 698 (2020)

    Article  ADS  Google Scholar 

  34. A. Banerjee, T. Tangphati, P. Channuie, Astrophys. J. 909, 13 (2021)

    Article  Google Scholar 

  35. J. M. Z. Pretel, A. Pradhan, A. Banerjee, Eur. Phys. J. C 82, 180 (2022)

    Article  ADS  Google Scholar 

  36. S. Shahidi, N. Khosravi, Eur. Phys. J. C 82, 269 (2022)

    Article  ADS  Google Scholar 

  37. M. Novello, S.E.P. Bergliaffa, Phys. Rept. 463, 127 (2008)

    Article  ADS  Google Scholar 

  38. R. H. Brandenberger (2012). [arXiv:1206.4196]

  39. V. Mukhanov, Physical Foundations of Cosmology (Cambridge University Press, Oxford, 2005)

    Book  MATH  Google Scholar 

  40. K. Bamba, S.D. Odintsov, Symmetry 7, 220 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  41. K. Bamba, G.G.L. Nashed, W. El Hanafy, S.K. Ibraheem, Phys. Rev. D 94, 8 (2016)

    Article  Google Scholar 

  42. W. El Hanafy and Emmanuel N. Saridakis J. Cosmol. Astropart. Phys. 09, 019 (2021)

  43. M. Hohmann, L. Jarv, U. Ualikhanova, Phys. Rev. D 96, 4 (2017)

    Google Scholar 

  44. J. Haro, J. Amoros, J. Cosmol. Astropart. Phys. 1412, 12 (2014)

    Google Scholar 

  45. J. Haro, J. Cosmol. Astropart. Phys. 1311, 068 (2013)

    Article  ADS  Google Scholar 

  46. G. Kofinas, E.N. Saridakis, Phys. Rev. D 90, 084044 (2014)

    Article  ADS  Google Scholar 

  47. G. Kofinas, G. Leon, E.N. Saridakis, Class. Quantum Gravity 31, 175011 (2014)

    Article  ADS  Google Scholar 

  48. A. de la Cruz-Dombriz, G. Farrugia, J.L. Said, D.S.-C. Gomez, Phys. Rev. D 97, 10 (2018)

    Google Scholar 

  49. A. de la Cruz-Dombriz, G. Farrugia, J.L. Said, D.S.-C. Gomez, Class. Quantum Gravity 34, 23 (2017)

    Google Scholar 

  50. G. Kofinas, E.N. Saridakis, Phys. Rev. D 90, 084045 (2014)

    Article  ADS  Google Scholar 

  51. Y.F. Cai, D.A. Easson, R. Brandenberger, J. Cosmol. Astropart. Phys. 1208, 020 (2012)

    Article  ADS  Google Scholar 

  52. R.H. Brandenberger, Proc. Sci. 001, 2010 (2010)

    Google Scholar 

  53. D. Battefeld, P. Peter, Phys. Rep. 571, 1 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  54. A. Ilyas, M. Zhu, Y. Zheng, Y.F. Cai, E.N. Saridakis, J. Cosmol. Astropart. Phys. 09, 002 (2020)

    Article  ADS  Google Scholar 

  55. A. Ilyas, M. Zhu, Y. Zheng, Y.F. Cai, J. High Energy Phys. 01, 141 (2021)

    Article  ADS  Google Scholar 

  56. M. Zhu, A. Ilyas, Y. Zheng, Y. F. Ca, E. N. Saridakis, J. Cosmol. Astropart. Phys. 11, 045 (2021)

    Article  ADS  Google Scholar 

  57. M. Farasat Shamir, Phys. Dark Univ. 32, 100794 (2021)

  58. M. Caruana, G. Farrugi , J. Levi Said, Eur. Phys. J. C 80, 640 (2020)

  59. S. Mandal, N. Myrzakulov, P. K. Sahoo1, R. Myrzakulov, Eur. Phys. J. Plus 136, 760 (2021)

  60. H. Shabani, A.H. Ziaie, Eur. Phys. J. C 78, 397 (2018)

    Article  ADS  Google Scholar 

  61. K. Bamba, A.N. Makarenko, A.N. Myagky, S. Nljiri, S.D. Odintosov, J. Cosmol. Astropart. Phys. 01, 008 (2014)

    Article  ADS  Google Scholar 

  62. K. Bamba, A.N. Makarenko, A.N. Myagky, S.D. Odintosov, Phys. Lett. B 732, 349 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  63. S. Chakraborty, Phys. Rev. D 98, 024009 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  64. Y.F. Cai, Sci. China, Phys., Mech. Astron. 57, 1414 (2014)

  65. S.D. Odintsov, V.K. Oikonomou, Phys. Rev. D 90, 124083 (2014)

    Article  ADS  Google Scholar 

  66. S.D. Odintsov, V.K. Oikonomou, Phys. Rev. D 92, 024016 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  67. Y.B. Li, J. Quintin, D.G. Wang, Y.F. Cai, J. Cosmol. Astropart. Phys. 03, 031 (2017)

    Article  ADS  Google Scholar 

  68. Y.F. Cai, S.H. Chen, J.B. Dent, S. Dutta, E.N. Saridakis, Class. Quantum Gravity 28, 215011 (2011)

    Article  ADS  Google Scholar 

  69. J.D. Haro, Y.F. Cai, Gen. Relativ. Gravity 47, 95 (2015)

    Article  ADS  Google Scholar 

  70. P. Sahoo, S. Bhattacharjee, S.K. Tripathy, P.K. Sahoo, Mod. Phys. Lett. A 2050095, 14 (2020)

    Google Scholar 

  71. C. Cattoen, M. Visser, Class. Quantum Gravity 22, 4913–4930 (2005)

    Article  ADS  Google Scholar 

  72. S. Capozziello, S. Nojiri, S.D. Odintsov, Phys. Lett. B 781, 99–106 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  73. U. Alam, V. Sahni, T.D. Saini, A.A. Starobinsky, Mon. Not. R. Astron. Soc. 344, 1057 (2003)

    Article  ADS  Google Scholar 

  74. A.G. Riess et al., Astrophys. J. 607, 665 (2004)

    Article  ADS  Google Scholar 

  75. V. Sahni, T.D. Saini, A.A. Starobinsky, U. Alam, JETP Lett. 77, 201–206 (2003)

    Article  ADS  Google Scholar 

  76. F. Y. Wang, Z. G. Dai1, Shi Qi, Astron. Astrophys. 507, 53 (2009)

  77. D. Rapetti, S.W. Allen, M.A. Amin, R.D. Blandford, Mon. Not. Roy. Astron. Soc. 375, 1510 (2007)

    Article  ADS  Google Scholar 

  78. A. Mukherjee, N. Banerjee, Astrophys. Space Sci. 352, 893 (2014)

    Article  ADS  Google Scholar 

  79. A. Aviles, C. Gruber, O. Luongo, H. Quevedo, Phys. Rev. D 86, 123516 (2012)

    Article  ADS  Google Scholar 

  80. S.K. Tripathy, R.K. Khuntia, P. Parida, Eur. Phys. J. Plus 134, 504 (2019)

    Article  Google Scholar 

  81. A.S. Agrawal, L. Pati, S.K. Tripathy, B. Mishra, Phys. Dark Universe 33, 100863 (2021)

    Article  Google Scholar 

  82. S. Mandal, S. Bhattacharjee, S.K.J. Pacif, P.K. Sahoo, Phys. Dark Universe 28, 100551 (2020)

    Article  Google Scholar 

  83. D.S. Wilks, Statistical Method in the Atomspheric Sciences (Elsevier Inc, Burlington, 2006)

    Google Scholar 

  84. G.S. Sharov, E.S. Sinyakov, Math. Model. Anal. 8, 1 (2020)

    Google Scholar 

  85. N. Suzuki et al., Astrophys. J. 746, 85 (2012)

    Article  ADS  Google Scholar 

  86. J. Simon, L. Verde, R. Jimenez, Phys. Rev. D 71, 123001 (2005)

    Article  ADS  Google Scholar 

  87. D. Stern et al., J. Cosmol. Astropart. Phys. 02, 008 (2010)

    Article  ADS  Google Scholar 

  88. M. Moresco et al., J. Cosmol. Astropart. Phys. 08, 006 (2012)

    Article  ADS  Google Scholar 

  89. N. G. Busca, et al. Astron. Astrophys. 552, A96 (2012)

    Article  Google Scholar 

  90. C. Zhang et al., Res. Astron. Astrophys. 14, 1221 (2014)

    Article  ADS  Google Scholar 

  91. C. Blake, et al. Mon. Not. R. Astron. Soc. 425, 1 (2012)

    Article  Google Scholar 

  92. C. H. Chuang, Y. Wang, Mon. Not. R. Astron. Soc., 435(1), 11 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Zubair.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zubair, M., Farooq, M. Bouncing behaviours in four dimensional Einstein Gauss-Bonnet gravity with cosmography and observational constraints. Eur. Phys. J. Plus 138, 173 (2023). https://doi.org/10.1140/epjp/s13360-023-03772-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-03772-1

Navigation