Skip to main content
Log in

The XYZ model by the series expansion of exponentials for spin matrices in the mean-field approximation

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The spin-1/2 XYZ model with Dzyaloshinskii-Moriya interaction (DMI) is considered in the mean-field approximation (MFA) by the series expansion of exponentials for the spin matrices. The bilinear interaction parameters J, external magnetic field H and the DMI are included into the Hamiltonian and their effects are considered for the magnetization components of the model for various values of the coordination numbers. The formulation of the model is obtained for the general interactions but the illustrations are only presented for the antiferromagnetic (AFM) model. The temperature changes of magnetizations are analyzed in detail to obtain the phase transition behavior of the model. It is found that the model presents ferromagnetic (FM) and random or oscillatory phase region (R). The AFM phase is only presented when DMI is turned off. It is also found that the R and AFM phases present only the second-order phase transitions.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability statement

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Introduction to Quantum Mechanics, David J. Griffiths, 1995 by Prentice Hill, Inc. Upper Saddle River, NJ 07458 (pages 156,159); Modern Quantum Mechanics, 2nd edition, J. J. Sakurai and Jim Napolitano, Copyright ©1994, 2011 Pearson Education, Inc., publishing as Addison-Wesley, 1301 Sansome Street, San Francisco, CA 94111

  2. M.A. Neto, J.R. Viana, O.D.R. Salmon, E.B. Filho, J.R. de Sousa, Mod. Phys. Lett. B 32, 1850390 (2018)

    Article  ADS  Google Scholar 

  3. R.I. Nepomechie, C. Wang, J. Phys. A: Math. Theor. 47, 032001 (2014)

    Article  ADS  Google Scholar 

  4. S. Jami, Z. Haqpanah, J. Korean Phys. Soc 72, 743 (2018)

    Article  ADS  Google Scholar 

  5. A. Degenhard, Phys. Rev. B 64, 1744081 (2001)

    Article  Google Scholar 

  6. D.F. de Albuquerque, S.R.L. Alves, A.S. de Arruda, Phys. Lett. A 346, 128 (2005)

    Article  ADS  Google Scholar 

  7. Y. Okabe, M. Kikuchi, J. Phys. Soc. Japan 57, 4351 (1988)

    Article  ADS  Google Scholar 

  8. M. Kikuchi, Y. Okabe, J. Phys. Soc. Japan 58, 679 (1989)

    Article  ADS  Google Scholar 

  9. D.J. Bukman, G. An, J.M.J. van Leeuwen, Phys. Rev. B 43, 13352 (1991)

    Article  ADS  Google Scholar 

  10. J.R. de Sousa, J.A. Plascak, Phys. Lett. A 237, 66 (1997)

    Article  ADS  Google Scholar 

  11. J.R. de Sousa, N.S. Branco, B. Boechat, C. Cordeiro, Physica A 328, 167 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  12. T. Suzuki, Y. Tomita, N. Kawashima, Phys. Rev. B 80, 180405(R) (2009)

    Article  ADS  Google Scholar 

  13. S. Rufo, G. Mendonça, J.A. Plascak, J.R. de Sousa, Phys. Rev. E 88, 034101 (2013)

    Article  ADS  Google Scholar 

  14. Y.-Z. Huang, B. Xi, X. Chen, W. Li, Z.-C. Wang, G. Su, Phys. Rev. E 93, 062110 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  15. K. Morita, T. Tohyama, Phys. Rev. B 99, 144417 (2019)

    Article  ADS  Google Scholar 

  16. W.E.F. Parente, J.T.M. Pacobahyba, M.A. Neto, I.G. Araújo, J.A. Plascak, J. Magn. Magn. Mater. 462, 8 (2018)

    Article  ADS  Google Scholar 

  17. M. Kohno, M. Takahashi, Phys. Rev. B 56, 3212 (1997)

    Article  ADS  Google Scholar 

  18. D.V. Dmitrieva, V.. Ya.. Krivnova, A.A. Ovchinnikova, A. Langarib, J. Exp. Theor. Phys. 95, 538 (2002)

    Article  ADS  Google Scholar 

  19. H. Moradmard, M.S. Naseri, S. Mahdavifar, J. Supercond. Nov. Magn. 27, 1265 (2014)

    Article  Google Scholar 

  20. W.E.F. Parente, J.T.M. Pacobahyba, I.G. Araújo, M.A. Neto, J.R. de Sousa, U. Akinci, J. Magn. Magn. Mater. 355, 235 (2014)

    Article  ADS  Google Scholar 

  21. E. Albayrak, Eur. Phys. J. B 72, 491 (2009)

    Article  ADS  Google Scholar 

  22. J. Cao, S. Cui, W.-L. Yang, K. Shi, Y. Wanga, Nuc. Phys. B 886, 185 (2014)

    Article  ADS  Google Scholar 

  23. A.S. Filho, D.F. de Albuquerque, J.B.S. Filho, T.S.A. Batista, Physica A 461, 133 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  24. M.H. Ben Chakour, A. El Allati, Y. Hassouni, Eur. Phys. J. D 75, 42 (2021)

    Article  ADS  Google Scholar 

  25. J. Li, S. Lei, Phys. Lett. A 372, 4086 (2008)

    Article  ADS  Google Scholar 

  26. A. Hehn, N. van Well, M. Troyer, Comp. Phys. Commun. 212, 180 (2017)

    Article  ADS  Google Scholar 

  27. E. Albayrak, Cond. Matter Phys. 25, 33701 (2022)

    Article  ADS  Google Scholar 

  28. H.A. Zad, A. Zoshki, M. Sabeti, Commun. Theor. Phys. 71, 1253 (2019)

    Article  ADS  Google Scholar 

  29. S. Sarkar, Int. J. Mod. Phys. B 23, 3363 (2009)

    Article  ADS  Google Scholar 

  30. J Strečka, L Čanová, K Minami, Phys. Rev. E 79, 051103 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  31. Y.H. Su, A.M. Chen, H. Wang, C. Xiang, Eur. Phys. J. B 90, 196 (2017)

    Article  ADS  Google Scholar 

  32. J Strečka, L Čanová, J. Phys.: Conf. Series 145, 012012 (2009)

    Google Scholar 

  33. G.-H. Liu, W.-L. You, W. Li, G. Su, J. Phys.: Condens. Matter 27, 165602 (2015)

    ADS  Google Scholar 

  34. W.E.F. Parente, J.T.M. Pacobahyba, M.A. Neto, I.G. Araújo, J.A. Plascak, J. Magn. Magn. Mater. 462, 8 (2018)

    Article  ADS  Google Scholar 

  35. N. Avalishvili, B. Beradze, G.I. Japaridze, Eur. Phys. J. B 92, 262 (2019)

    Article  ADS  Google Scholar 

  36. Y.-H. Chan, W. Jin, H.-C. Jiang, O.A. Starykh, Phys. Rev. B 96, 214441 (2017)

    Article  ADS  Google Scholar 

  37. M.O. Flynn, R.R.P. Singh, Phys. Rev. B 100, 121108(R) (2019)

    Article  ADS  Google Scholar 

  38. A.S. Freitas, D.F. de Albuquerque, Phys. Rev. E 91, 012117 (2015)

    Article  ADS  Google Scholar 

  39. N. Grandi, M. Lagos, J. Oliva, A. Vera, Eur. Phys. J. B 92, 244 (2019)

    Article  ADS  Google Scholar 

  40. C. Griset, S. Head, J. Alicea, O.A. Starykh, Phys. Rev. B 84, 245108 (2011)

    Article  ADS  Google Scholar 

  41. G.I. Japaridze, H. Cheraghi, S. Mahdavifar, Phys. Rev. E 104, 014134 (2021)

    Article  ADS  Google Scholar 

  42. X. Li, J. Jin, Phys. Rev. B 103, 035127 (2021)

    Article  ADS  Google Scholar 

  43. L. Messio, S. Bieri, C. Lhuillier, B. Bernu, Phys. Rev. Lett. 118, 267201 (2017)

    Article  ADS  Google Scholar 

  44. A. Sera, Y. Kousaka, J. Akimitsu, M. Sera, T. Kawamata, Y. Koike, K. Inoue, Phys. Rev. B 94, 214408 (2016)

    Article  ADS  Google Scholar 

  45. R. Shindou, Phys. Rev. B 93, 094419 (2016)

    Article  ADS  Google Scholar 

  46. H. Szymczak, M. Baran, R. Szymczak, S.N. Barilo, G.L. Bychkov, S.V. Shiryaev, Acta Phys. Pol. A 71, 111 (2007)

    Google Scholar 

  47. L.D. Landau, Phys. Z. Sowjet 4, 675 (1933)

    Google Scholar 

  48. E. Albayrak, M. Keskin, J. Magn. Magn Mater. 206, 83 (1999)

    Article  ADS  Google Scholar 

  49. E. Albayrak, Condens. Matter Phys. 25, 33701 (2022)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erhan Albayrak.

Ethics declarations

Conflict of interest

The authors have no conflict to disclose.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Albayrak, E. The XYZ model by the series expansion of exponentials for spin matrices in the mean-field approximation. Eur. Phys. J. Plus 138, 228 (2023). https://doi.org/10.1140/epjp/s13360-023-03802-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-03802-y

Navigation