Skip to main content
Log in

The reconstruction of constant jerk parameter with f(RT) gravity in Bianchi-I spacetime

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We have developed a Bianchi I cosmological model of the universe in f(RT) gravity theory which fit good with the present-day scenario of accelerating universe. The model displays transition from deceleration in the past to the acceleration at the present. As in the \(\Lambda\)CDM model, we have defined the three energy parameters \(\Omega _m\), \(\Omega _{\mu }\) and \(\Omega _{\sigma }\) such that \(\Omega _m\) + \(\Omega _{\mu }\) + \(\Omega _{\sigma }\) = 1. The parameter \(\Omega _m\) is the matter energy density (baryons + dark matter), \(\Omega _{\mu }\) is the energy density associated with the Ricci scalar R and the trace T of the energy momentum tensor and \(\Omega _{\sigma }\) is the energy density associated with the anisotropy of the universe. We shall call \(\Omega _{\mu }\) dominant over the other two due to its higher value. We find that the \(\Omega _{\mu }\) and the other two in the ratio 3:1. 46 Hubble OHD data set is used to estimate present values of Hubble \(H_0\), deceleration \(q_0\) and jerk j parameters. 1\(\sigma\), 2\(\sigma\) and 3\(\sigma\) contour region plots for the estimated values of parameters are presented. 580 SNIa supernova distance modulus data set and 66 pantheon SNIa data which include high red shift data in the range \(0\le z\le 2.36\) have been used to draw error bar plots and likelihood probability curves for distance modulus and apparent magnitude of SNIa supernova’s. We have calculated the pressures and densities associated with the two matter densities, viz. \(p_{\mu }\), \(\rho _{\mu }\), \(p_m\) and \(\rho _m\), respectively. The present age of the universe as per our model is also evaluated, and it is found at par with the present observed values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability statement

This manuscript has no associated data or the data will not be deposited.

References

  1. A.G. Riess et al., [Supernova Search Team], Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 116, 1009–1038 (1998)

    Article  ADS  Google Scholar 

  2. P.M. Garnavich et al., Constraints on cosmological models from hubble space telescope observations of high-z supernovae. Astrophys. J. 493, L53 (1998)

    Article  ADS  Google Scholar 

  3. S. Perlmutter et al., [Supernova Cosmology Project], Measurements of \(\Omega\) and \(\Lambda\) from 42 high redshift supernovae. Astrophys. J. 517, 565–586 (1999)

    Article  ADS  MATH  Google Scholar 

  4. A.G. Riess, Type Ia supernova discoveries at \(z > 1\) from the hubble space telescope: evidence for past deceleration and constraints on dark energy evolution\(^{*}\). Astrophys. J. 607, 665 (2004)

    Article  ADS  MATH  Google Scholar 

  5. A.G. Tegmark et al., Cosmological parameters from SDSS and WMAP. Phys. Rev. D 69, 103501 (2004)

    Article  ADS  MATH  Google Scholar 

  6. D.N. Spergel et al., First-year Wilkinson microwave anisotropy probe (WMAP)\(^*\) observations: determination of cosmological parameters. Astrophys. J. Suppl. Ser. 148, 175 (2003)

    Article  ADS  Google Scholar 

  7. E. Calabrese, M. Migliaccio, L. Pagano, G. De Troia, A. Melchiorri, P. Natoli, Phys. Rev. D 80, 063539 (2009)

    Article  ADS  Google Scholar 

  8. Y. Wang, M. Dai, Exploring uncertainties in dark energy constraints using current observational data with Planck 2015 distance priors. Phys. Rev. D 94, 083521 (2016)

    Article  ADS  Google Scholar 

  9. M. Zhao, D. Ze He, J. Fei Zhang, X. Zhang, Search for sterile neutrinos in holographic dark energy cosmology: reconciling Planck observation with the local measurement of the Hubble constant, Phys. Rev. D 96, 043520 (2017)

  10. B. Wang, E. Abdalla, F. Atrio-Barandela, D. Pavon, Dark matter and dark energy interactions: theoretical challenges, cosmological implications and observational signatures. Rep. Prog. Phys. 79, 096901 (2016)

    Article  ADS  Google Scholar 

  11. P.J.E. Peebles, B. Ratra, The cosmological constant and dark energy. Rev. Mod. Phys. 75, 559 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. T. Padmanabhan, Cosmological constant \(\Lambda\) the weight of the vacuum II. Phys. Rep. 380, 235 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. E.J. Copeland, M. Sami, S. Tsujikawa, Dynamics of dark energy. Int. J. Mod. Phys. D 15, 1753 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. M. Li, X.D. Li, S. Wang, Y. Wang, Dark energy: a brief review. Front. Phys. 8, 828 (2013)

    Article  ADS  Google Scholar 

  15. S. Weinberg, Sources and detection of dark matter and dark energy in the universe: the cosmological constant problem (Springer, 2001), pp. 18-26

  16. V. Sahni, The cosmological constant problem and quintessence. Class. Quantum Grav. 19, 3435 (2002)

    Article  ADS  MATH  Google Scholar 

  17. J. Garriga, A. Vilenkin, Solutions to the cosmological constant problems. Phys. Rev. D 64, 023517 (2001)

    Article  ADS  Google Scholar 

  18. J.A. Frieman, M.S. Turner, D. Huterer, Dark energy and the accelerating universe. Annu. Rev. Astron. Astrophys. 46, 385 (2008)

    Article  ADS  Google Scholar 

  19. S. Nojiri, S.D. Odintsov, Unified cosmic history in modified gravity: from F (R) theory to Lorentz non-invariant models. Phys. Rep. 505, 59 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  20. R. Caldwell, M. Kamionkowski, The physics of cosmic acceleration. Annu. Rev. Astron. Astrophys. 59, 397 (2009)

    Google Scholar 

  21. P.J.E. Peebles, B. Ratra, The cosmological constant and dark energy. Rev. Mod. Phys. 75, 559–606 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. P. Steinhardt, L. Wang, I. Zlatev, Cosmological tracking solutions. Phys. Rev. D 59, 123504 (1999)

    Article  ADS  Google Scholar 

  23. V.B. Johri, Genesis of cosmological tracker fields. Phys. Rev. D 63, 103504 (2001)

    Article  ADS  Google Scholar 

  24. R.R. Caldwell, A phantom menace? Cosmological consequences of a dark energy component with super-negative equation of state. Phys. Lett. B 545, 23–29 (2002)

    Article  ADS  Google Scholar 

  25. V.B. Johri, Phantom cosmologies. Phys. Rev. D 70, 041303 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  26. H.R. Fazlollahi, Holographic dark energy from acceleration of particle horizon. Chin. Phys. C 47, 035101 (2023)

    Article  ADS  Google Scholar 

  27. M. Li, X.D. Li, Y. Wang, X. Zhang, Probing interaction and spatial curvature in the holographic dark energy model. J. Cosmol. Astropart. Phys. 12, 014 (2009)

    Article  ADS  Google Scholar 

  28. S. Nojiri, S.D. Odintsov, Introduction to modified gravity and gravitational alternative for dark energy. Phys. Rev. D 70, 103522 (2004)

    Article  ADS  Google Scholar 

  29. S. Nojiri, S.D. Odintsov, S. Tsujikawa, Properties of singularities in the (phantom) dark energy universe. Phys. Rev. D 71, 063004 (2005)

    Article  ADS  Google Scholar 

  30. S. Nojiri, S.D. Odintsov, Unifying phantom inflation with late-time acceleration: scalar phantom-non-phantom transition model and generalized holographic dark energy. Gen. Relat. Gravit. 38, 1285 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. S. Nojiri, S.D. Odintsov, Properties of singularities in the (phantom) dark energy universe. Phys. Rev. D 72, 023003 (2005)

    Article  ADS  Google Scholar 

  32. M. Li, A model of holographic dark energy. Phys. Lett. B 603, 1 (2004)

    Article  ADS  Google Scholar 

  33. S. Nojiri, S.D. Odintsov, E.N. Saridakis, Modified cosmology from extended entropy with varying exponent. Eur. Phys. J. C 79, 242 (2019)

    Article  ADS  Google Scholar 

  34. R.C. Nunes, E.M. Barboza Jr., E.M.C. Abreu, J.A. Neto, Probing the cosmological viability of non-gaussian statistics. J. Cosmol. Astropart. Phys. 08, 051 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  35. A.K. Yadav, Note on Tsallis holographic dark energy in Brans-Dicke cosmology. Eur. Phys. J. C 81, 8 (2021)

    Article  ADS  Google Scholar 

  36. T. Harko, F.S.N. Lobo, S. Nojiri, S.D. Odintsov, f(R, T) gravity. Phys. Rev. D 84, 024020 (2011)

    Article  ADS  Google Scholar 

  37. T. Harko, Thermodynamic interpretation of the generalized gravity models with geometry-matter coupling. Phys. Rev. D 90, 044067 (2014)

    Article  ADS  Google Scholar 

  38. V.K. Bhardwaj, A.K. Yadav, Some Bianchi type-V accelerating cosmological models in \(f(R, T) = f_{1}(R) + f_{2}(T)\) formalism. Int. J. Geom. Methods Mod. Phys. 17, 2050159 (2020)

    Article  MathSciNet  Google Scholar 

  39. T. Tangphati, G. Panotopoulos, A. Banerjee, A. Pradhan, Charged compact stars with colour-flavour-locked strange quark matter in f(R, T) gravity. Chin. J. Phys. 82, 62–74 (2023)

    Article  Google Scholar 

  40. L.K. Sharma, A.K. Yadav, B.K. Singh, Power-law solution for homogeneous and isotropic universe in f (R, T) gravity. New Astron. 79, 101396 (2020)

    Article  Google Scholar 

  41. A. Pradhan, G.K. Goswami, R. Rani, A. Beesham, An f(R, T) gravity based FLRW model and observational constraints, arXiv:2210.15433v1 [gr-qc] 26 Oct (2022)

  42. L.K. Sharma, A.K. Yadav, P.K. Sahoo, B.K. Singh, Non-minimal matter-geometry coupling in Bianchi I space-time. Results Phys. 10, 738 (2018)

    Article  ADS  Google Scholar 

  43. J.M.Z. Pretel, T. Tangphati, A. Banerjee, A. Pradhan, Charged quark stars in f(R, T) gravity. Chin. Phys. C 46, 115103 (2022)

    Article  ADS  Google Scholar 

  44. V.K. Bhardwaj, A. Pradhan, Evaluation of cosmological models in \(f(R, T)\) gravity in different dark energy scenario. New Astron. 91, 101675 (2022)

    Article  Google Scholar 

  45. S. Nojiri, S.D. Odintsov, Unified cosmic history in modified gravity: from F(R) theory to Lorentz non-invariant models. Phys. Rep. 505, 59 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  46. S.M. Carroll, V. Duvvuri, M. Trodden, M.S. Turner, Is cosmic speed-up due to new gravitational physics? Phys. Rev. D 70, 043528 (2004)

    Article  ADS  Google Scholar 

  47. S.K. Srivastava, Scale factor dependent equation of state for curvature inspired dark energy, phantom barrier and late cosmic acceleration. Phys. Lett. B 643, 1–4 (2006)

    Article  ADS  MATH  Google Scholar 

  48. W. Hu, I. Sawicki, Models of f(R) cosmic acceleration that evade solar system tests. Phys. Rev. D 76, 064004 (2007)

    Article  ADS  Google Scholar 

  49. S. Nojiri, S.D. Odintsov, Modified gravity with negative and positive powers of curvature: Unification of inflation and cosmic acceleration. Phys. Rev. D 68, 123512 (2003)

    Article  ADS  Google Scholar 

  50. S. Capozziello, V.F. Cardone, A. Troisi, Dark energy and dark matter as curvature effects? J. Cosmol. Astropart. Phys. 08, 001 (2006)

    Article  ADS  Google Scholar 

  51. C.F. Martins, P. Salucci, Analysis of rotation curves in the framework of \(R^n\) gravity. Mon. Not. R. Astron. Soc. 381, 1103 (2007)

    Article  ADS  Google Scholar 

  52. C.G. B\(\ddot{o}\)hmer, T. Harko, F.S.N. Lobo, Dark matter as a geometric effect in f(R) gravity, Astropart. Phys. 29, 386 (2008)

  53. C.G. B\(\ddot{o}\)hmer, T. Harko, F.S.N. Lobo, The generalized virial theorem in f (R) gravity, J. Cosmol. Astropart. Phys. 2008( 03), 024

  54. A. De Felice, S. Tsujikawa, Construction of cosmologically viable f (G) gravity models. Phys. Lett. B 675, 1 (2009)

    Article  ADS  Google Scholar 

  55. K. Bamba, S.D. Odintsov, L. Sebastiani, S. Zerbini, Finite-time future singularities in modified Gauss-Bonnet and \(F(R, G)\) gravity and singularity avoidance. Eur. Phys. J. C 67, 295 (2010)

    Article  ADS  Google Scholar 

  56. S. Bahamonde, M. Zubair, G. Abbas, Thermodynamics and cosmological reconstruction in \(f(T, B)\) gravity. Phys. Dark Univ. 19, 78 (2018)

    Article  Google Scholar 

  57. D.N. Spergel et al., [WMAP collaboration], First year wilkinson microwave anisotropy probe (WMAP) observations determination of cosmological parameters. Astrophys. J. Suppl. 148, 175 (2003)

    Article  ADS  Google Scholar 

  58. C.L. Bennett et al., The microwave anisotropy probe\(^*\) mission. Astrophys. J. Suppl. Ser. 148, 1043 (2003)

    Google Scholar 

  59. \({\ddot{O}}\). Akarsu, S. Kumar, S. Sharma, L. Tedesco, Constraints on a Bianchi type I spacetime extension of the standard model, Phys. Rev. D 100, 023532 (2019)

  60. H. Amirhashchi, Probing dark energy in the scope of a Bianchi type I spacetime. Phys. Rev. D 97, 063515 (2018)

    Article  ADS  Google Scholar 

  61. H. Amirhashchi, S. Amirhashchi, Constraining Bianchi type I universe with type Ia supernova and \(H(z)\) data. Phys. Dark Univ. 29, 100557 (2020)

    Article  Google Scholar 

  62. R. Prasad, L.K. Gupta, A. Beesham, G.K. Goswami, A.K. Yadav, Bianchi type I Universe: an extension of \(\Lambda\)CDM model. Int. J. Geom. Methods Mod. Phys. 18, 2150069 (2021)

    Article  MathSciNet  Google Scholar 

  63. N. Singla, A.K. Yadav, M.K. Gupta, G.K. Goswami, R. Prasad, Probing kinematics and fate of Bianchi type I universe in Brans-Dicke theory. Mod. Phys. Lett. A 35, 2050174 (2020)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  64. G.K. Goswami, M. Mishra, A.K. Yadav, A. Pradhan, Two-fluid scenario in Bianchi type-I universe. Mod. Phys. Lett. A 35, 2050086 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  65. V.K. Bhardwaj, A. Dixit, R. Rani, G.K. Goswami, A. Pradhan, An axially symmetric transitioning models with observational constraints. Chin. J. Phys. 37, 261–274 (2022)

    Article  MathSciNet  Google Scholar 

  66. K. Bamba, A.N. Makarenko, A.N. Myagky, S. Nojiri, S.D. Odintsov, Bounce cosmology from F(R) gravity and F(R) bigravity. J. Cosm. Astropart. Phys. 01, 008 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  67. A. Malik, M.F. Shamir, Dynamics of some cosmological solutions in modified f(R) gravity. New Astron. 82, 101460 (2021)

    Article  Google Scholar 

  68. M.F. Shamir, E. Meer, Study of compact stars in \(\Re + \alpha {\cal{A} }\) gravity. Eur. Phys. J. C 83, 49 (2023)

    Article  ADS  Google Scholar 

  69. M.F. Shamir, Z. Raza, Locally rotationally symmetric Bianchi type I cosmology in f(R) gravity. Can. J. Phys. 93, 37 (2015)

    Article  ADS  Google Scholar 

  70. M.F. Shamir, Dynamics of anisotropic power-law f(R) cosmology. J. Expert. Theor. Phys. 123, 979 (2016)

    Article  ADS  Google Scholar 

  71. M.F. Shamir, A. Usman, T. Naz, Physical attributes of Bardeen stellar structures in f(R) gravity. Adv. High Energ. Phys. 4742306, 1–14 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  72. M.F. Shamir, Bouncing cosmology in f(G, T) gravity with lagarithmic trace term. Adv. Astron. 8852581, 12 (2021)

    ADS  Google Scholar 

  73. M.F. Shamir, Anisotropic universe in f(G, T) gravity. Adv. High Energ. Phys. 6378904, 10 (2017)

    MathSciNet  MATH  Google Scholar 

  74. A.K. Yadav et al., Constraining a bulk viscous Bianchi type I dark energy dominated universe with recent observational data. Phy. Rev. D 104, 064044 (2021)

    Article  ADS  Google Scholar 

  75. N. Aghanim et al., Planck 2018 results. VI. Cosmological parameters, Astron. Astrophys. 641, (2020) A6. [erratum: Astron. Astrophys. 652, C4 (2021)]

  76. E. Macaulay et al., [DES], First cosmological results using Type Ia supernovae from the dark energy survey: measurement of the Hubble constant. Mon. Not. Roy. Astron. Soc. 486, 2184–2196 (2019)

    Article  ADS  Google Scholar 

  77. C. Zhang, H. Zhang, S. Yuan, T.J. Zhang, Y.C. Sun, Four new observational \(H(z)\) data from luminous red galaxies in the sloan digital sky Survey data release seven. Res. Astron. Astrophys. 14, 1221–1233 (2014)

    Article  ADS  Google Scholar 

  78. D. Stern, R. Jimenez, L. Verde, M. Kamionkowski, S.A. Stanford, Cosmic chronometers: constraining the equation of state of dark energy. I:\(H (z)\) measurements, JCAP 2010(02), 008 (2010)

  79. E. Gaztanaga, A. Cabre, L. Hui, Clustering of luminous red galaxies IV: Baryon acoustic peak in the line-of-sight direction and a direct measurement of \(H(z)\). Mon. Not. Roy. Astron. Soc. 399, 1663–1680 (2009)

    Article  ADS  Google Scholar 

  80. C.H. Chuang, Y. Wang, Modeling the anisotropic two-point galaxy correlation function on small scales and improved measurements of \(H(z)\), \(D_A(z)\), and \(\beta (z)\) from the Sloan Digital Sky Survey DR7 luminous red galaxies. Mon. Not. Roy. Astron. Soc. 435, 255–262 (2013)

    Article  ADS  Google Scholar 

  81. S. Alam et al., [BOSS], The clustering of galaxies in the completed SDSS-III baryon oscillation spectroscopic survey: cosmological analysis of the DR12 galaxy sample. Mon. Not. Roy. Astron. Soc. 470, 2617–2652 (2017)

    Article  ADS  Google Scholar 

  82. C. Blake, S. Brough, M. Colless, C. Contreras, W. Couch, S. Croom, D. Croton, T. Davis, M.J. Drinkwater, K. Forster et al., The WiggleZ dark energy survey: joint measurements of the expansion and growth history at z \(<\) 1. Mon. Not. Roy. Astron. Soc. 425, 405–414 (2012)

    Article  ADS  Google Scholar 

  83. A.L. Ratsimbazafy, S.I. Loubser, S.M. Crawford, C.M. Cress, B.A. Bassett, R.C. Nichol, P. Väisänen, Age-dating luminous red galaxies observed with the Southern African large telescope. Mon. Not. Roy. Astron. Soc. 467, 3239–3254 (2017)

    Article  ADS  Google Scholar 

  84. M. Moresco, Raising the bar: new constraints on the Hubble parameter with cosmic chronometers at \(z \sim 2\). Mont. Not. Royal Astron. Soci. Lett. 450, L16–L20 (2015)

    Article  ADS  Google Scholar 

  85. J. Simon, L. Verde, R. Jimenez, Constraints on the redshift dependence of the dark energy potential. Phys. Rev. D 71, 123001 (2005)

    Article  ADS  Google Scholar 

  86. M. Moresco et al., Improved constraints on the expansion rate of the universe up to \(z \sim 1.1\) from the spectroscopic evolution of cosmic chronometers, JCAP 8, 006 (2012)

  87. M. Moresco et al., A 6 measurement of the Hubble parameter at \(z \sim 0.45\) direct evidence of the epoch of cosmic re-acceleration, JCAP 05, 014 (2016)

  88. T. Delubac, J. Rich, S. Bailey, A. Font-Ribera et al., Baryon acoustic oscillations in the Ly\(\alpha\) forest of BOSS quasars. Astron. Astrophys. 552, A96 (2013)

    Article  Google Scholar 

  89. T. Delubac, J.E. Bautista, J. Rich, D. Kirkby et al., Baryon acoustic oscillations in the Ly\(\alpha\) forest of BOSS DR11 quasars. Astron. Astrophys. 574, A59 (2015)

    Article  Google Scholar 

  90. A. Font-Ribera et al., Quasar-Lyman \(\alpha\) forest cross-correlation from BOSS DR11: Baryon acoustic oscillations. JCAP 2014(05), 027 (2014)

    Article  MathSciNet  Google Scholar 

  91. N. Suzuki et al., The Hubble space telescope cluster supernova survey V improving the darkenergy constraints above z \(>\) 1 and building an early-type-hosted supernova sample. Astrophys. J. 746, 85–115 (2012)

    Article  ADS  Google Scholar 

  92. D.M. Scolnic et al., [Pan-STARRS1], The complete Light-curve sample of spectroscopically confirmed SNe Ia from Pan-STARRS1 and cosmological constraints from the combined Pantheon sample. Astrophys. J. 859, 101 (2018)

    Article  ADS  Google Scholar 

  93. D. Scolnic, D. Brout, A. Carr, A.G. Riess, T.M. Davis, A. Dwomoh, D.O. Jones, N. Ali, P. Charvu, R. Chen et al., The Pantheon+ analysis: the full data set and light-curve release. Astrophys. J. 938, 113 (2022)

    Article  ADS  Google Scholar 

  94. D. Brout, D. Scolnic, B. Popovic, A.G. Riess, J. Zuntz, R. Kessler, A. Carr, T.M. Davis, S. Hinton, D. Jones et al., The Pantheon+ analysis: cosmological constraints. Astrophys. J. 938, 110 (2022)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author (A. Pradhan) thanks the IUCAA, Pune, India, for providing facilities under associateship programs. The authors acknowledge sincere thanks to anonymous referee for constructive suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anirudh Pradhan.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pradhan, A., Goswami, G. & Krishnannair, S. The reconstruction of constant jerk parameter with f(RT) gravity in Bianchi-I spacetime. Eur. Phys. J. Plus 138, 451 (2023). https://doi.org/10.1140/epjp/s13360-023-04057-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04057-3

Navigation