Skip to main content
Log in

Multifractal formalism combined with multiresolution wavelet analysis of physiological signals

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

An approach to the processing of physiological signals is considered combining multifractal formalism with multiresolution wavelet analysis, which involves the transition from the original signals to sets of detail wavelet-coefficients related to different levels of resolution. This transition could expand the possibilities of multifractal analysis from the viewpoint of physiological interpretation of the results. In particular, changes in the singularity spectra due to variations in system behavior are associated with specific frequency regions, what simplifies their description and can provide a link between observed phenomena and changes in rhythms of electroencephalograms (EEG) or other physiological processes when the method is applied to datasets of different origins. We illustrate this approach using EEG signals during mental tasks solving.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. I. Daubechies, Ten lectures on wavelets (Society for Industrial and Applied Mathematics, Philadelphia, 1992)

    Book  MATH  Google Scholar 

  2. Y. Meyer, Wavelets: algorithms & applications (Society for Industrial and Applied Mathematics, Philadelphia, 1993)

    MATH  Google Scholar 

  3. S. Mallat, A wavelet tour of signal processing: the sparse way, 3rd edn. (Academic Press, London, 2008)

    MATH  Google Scholar 

  4. P.S. Addison, The illustrated wavelet transform handbook: introductory theory and applications in science, engineering, medicine and finance, 2nd edn. (CRC Press, Boca Raton, 2017)

    Book  MATH  Google Scholar 

  5. M. Vetterli, J. Kovacevic, Wavelets and subband coding (Prentice Hall, Hoboken, 1995)

    MATH  Google Scholar 

  6. I.M. Dremin, V.I. Furletov, O.V. Ivanov, V.A. Nechitailo, V.G. Terziev, Control Eng. Pract. 10, 599 (2002)

    Article  Google Scholar 

  7. J.C. van den Berg, Wavelets in physics (Cambridge University Press, Cambridge, 1998)

    MATH  Google Scholar 

  8. N.M. Astafyeva, I.M. Dremin, K.A. Kotelnikov, Modern Phys. Lett. A 12, 1185 (1997)

    Article  ADS  Google Scholar 

  9. S. Thurner, M.C. Feurstein, M.C. Teich, Phys. Rev. Lett. 80, 1544 (1998)

    Article  ADS  Google Scholar 

  10. A.E. Hramov, A.A. Koronovskii, V.A. Makarov, V.A. Maksimenko, A.N. Pavlov, E. Sitnikova, Wavelets in neuroscience, 2nd edn. (Springer, Cham, 2021)

    Book  MATH  Google Scholar 

  11. G.A. Guyo, A.N. Pavlov, E.N. Pitsik, N.S. Frolov, A.A. Badarin, V.V. Grubov, O.N. Pavlova, A.E. Hramov, Chaos, Solit. Fract. 158, 112038 (2022)

    Article  Google Scholar 

  12. O.N. Pavlova, G.A. Guyo, A.N. Pavlov, Physica A 585, 126406 (2022)

    Article  Google Scholar 

  13. A.N. Pavlov, O.N. Pavlova, O.V. Semyachkina-Glushkovskaya, J. Kurths, Chaos 31, 043110 (2021)

    Article  ADS  Google Scholar 

  14. A.N. Pavlov, O.N. Pavlova, Chaos Solit. Fract. 146, 110924 (2021)

    Article  Google Scholar 

  15. J.F. Muzy, E. Bacry, A. Arneodo, Phys. Rev. Lett. 67, 3515 (1991)

    Article  ADS  Google Scholar 

  16. J.F. Muzy, E. Bacry, A. Arneodo, Phys. Rev. E 47, 875 (1993)

    Article  ADS  Google Scholar 

  17. A. Arneodo, Y. D’Aubenton-Carafa, B. Audit, E. Bacry, J.F. Muzy, C. Thermes, Physica A 249, 439 (1998)

    Article  ADS  Google Scholar 

  18. P.C. Ivanov, L.A.N. Amaral, A.L. Goldberger, S. Havlin, M.G. Rosenblum, Z.R. Struzik, H.E. Stanley, Nature 399, 461 (1999)

    Article  ADS  Google Scholar 

  19. A. Marrone, A.D. Polosa, G. Scioscia, S. Stramaglia, A. Zenzola, Phys. Rev. E 60, 1088 (1999)

    Article  ADS  Google Scholar 

  20. H.E. Stanley, L.A.N. Amaral, A.L. Goldberger, S. Havlin, P.Ch. Ivanov, C.-K. Peng, Physica A 270, 309 (1999)

    Article  ADS  Google Scholar 

  21. L.A. Nunes-Amaral, PCh. Ivanov, N. Aoyagi, I. Hidaka, S. Tomono, A.L. Goldberger, H.E. Stanley, Y. Yamamoto, Phys. Rev. Lett. 86, 6026 (2001)

    Article  ADS  Google Scholar 

  22. P.Ch. Ivanov, L.A.N. Amaral, A.L. Goldberger, S. Havlin, M.G. Rosenblum, H.E. Stanley, Z.R. Struzik, Chaos 11, 641 (2001)

    Article  ADS  Google Scholar 

  23. J.F. Muzy, E. Bacry, A. Arneodo, Int. J. Bifurc. Chaos 4, 245 (1994)

    Article  Google Scholar 

  24. L.P.A. Arts, E.L. van den Broek, Nat. Comput. Sci. 2, 47 (2022)

    Article  Google Scholar 

  25. V.A. Maksimenko, A. Pavlov, A.E. Runnova, V. Nedaivozov, V. Grubov, A. Koronovskii, S.V. Pchelintseva, E. Pitsik, A.N. Pisarchik, A.E. Hramov, Nonlinear Dyn. 91, 2803 (2018)

    Article  Google Scholar 

  26. O.N. Pavlova, A.S. Abdurashitov, M.V. Ulanova, N.A. Shushunova, A.N. Pavlov, Commun. Nonlinear Sci. Numer. Simulat. 66, 31 (2019)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Russian Science Foundation (Agreement 19-12-00037) in the part of theoretical and numerical studies. Physiological experiments were carried out within the framework of the grant from the Government of the Russian Federation No. 075-15-2022-1094.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Pavlov.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pavlova, O.N., Guyo, G.A. & Pavlov, A.N. Multifractal formalism combined with multiresolution wavelet analysis of physiological signals. Eur. Phys. J. Spec. Top. 232, 643–647 (2023). https://doi.org/10.1140/epjs/s11734-022-00716-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-022-00716-1

Navigation