Skip to main content
Log in

Laser-dressed photoionization for the temporal characterization of attosecond pulses generated from plasma mirrors

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

A Publisher Correction to this article was published on 26 April 2023

This article has been updated

Abstract

We report on the implementation of a laser-dressed photoionization method aimed at measuring the temporal structure of high-order harmonics generated from plasma mirrors at the attosecond timescale. Using numerical simulations, we show that the infrared dressing pulse induces up-down asymmetry on the angular distribution of photoelectrons. Experimentally single-shot photoelectron spectra with angular resolution were successfully detected with a velocity-map imaging spectrometer. However, the impact of the infrared dressing field in the photoelectron spectra could not be observed. We discuss several issues that potentially hampered these observations and suggest corresponding setup improvements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request. This manuscript has associated data in a data repository. [Authors’ comment: The raw data reported in this study are available from the corresponding author on reasonable request.]

Change history

References

  1. W. Ackermann, G. Asova, V. Ayvazyan et al., Nat. Photon. 1, 336–342 (2007)

    Article  ADS  Google Scholar 

  2. E. Allaria, C. Callegari, D. Cocco, W.M. Fawley, M. Kiskinova, C. Masciovecchio, F. Parmigiani, New J. Phys. 12, 075002 (2010)

    Article  ADS  Google Scholar 

  3. P. Corkum, F. Krausz, Nat. Phys. 3, 381–387 (2007)

    Article  Google Scholar 

  4. S. Chatziathanasiou, S. Kahaly, E. Skantzakis, G. Sansone, R. Lopez-Martens, S. Haessler, P. Tzallas, Photonics 4, 26–65 (2017)

    Article  Google Scholar 

  5. C. Thaury, F. Quéré, J. Phys. B At. Mol. Opt. Phys. 43, 213001 (2010)

    Article  ADS  Google Scholar 

  6. Y. Wang, E. Granados, F. Pedaci, D. Alessi, B. Luther, M. Berrill, J.J. Rocca, Nat. Photon. 2, 94–98 (2018)

    Article  ADS  Google Scholar 

  7. A. Depresseux, E. Oliva, J. Gautier, F. Tissandier, J. Nejdl, M. Kozlova, S. Sebban, Nat. Photon. 9, 1–6 (2015)

    Article  Google Scholar 

  8. I. Orfanos, I. Makos, I. Liontos, E. Skantzakis, B. Förg, D. Charalambidis, P. Tzallas, APL Photon. 4, 5086773 (2019)

    Article  Google Scholar 

  9. S. Düsterer, M. Rehders, A. Al-Shemmary, C. Behrens, G. Brenner, O. Brovko, S. Schreiber, Phys. Rev. Spec. Top. Acceler. Beams 17, 120702 (2014)

    Article  ADS  Google Scholar 

  10. W. Helml, I. Grguraš, P.N. Juranić, S. Düsterer, T. Mazza, A.R. Maier, R. Kienberger, Appl. Sci. (Switzerland) 7, 1–42 (2017)

  11. P.M. Paul, E.S. Toma, P. Breger, G. Mullot, F. Auge, P. Balcou, H.G. Muller, P. Agostini, Science 292, 1689 (2001)

    Article  ADS  Google Scholar 

  12. E. Goulielmakis, M. Uiberacker, R. Kienberger, A. Baltuska, V. Yakovlev, A. Scrinzi, T. Westerwalbesloh, U. Kleineberg, U. Heinzmann, M. Drescher, F. Krausz, Science 305, 1267 (2004)

    Article  ADS  Google Scholar 

  13. Y. Mairesse, F. Quéré, Phys. Rev. A 71, 011401(R) (2005)

    Article  ADS  Google Scholar 

  14. U. Frühling, M. Wieland, M. Gensch, T. Gebert, B. Schütte, M. Krikunova, R. Kalms, F. Budzyn, O. Grimm, J. Rossbach, E. Plönjes, M. Drescher, Nat. Photon. 3, 523 (2009)

    Article  ADS  Google Scholar 

  15. R. Ivanov, I.J.B. Macias, J. Liu, G. Brenner, J. Roensch-Schulenburg, G. Kurdi, U. Frühling, K. Wenig, S. Walther, A. Dimitriou, M. Drescher, I.P. Sazhina, A.K. Kazansky, N.M. Kabachnik, S. Düsterer, J. Phys. B At. Mol. Opt. Phys. 53, 184004 (2020)

    Article  ADS  Google Scholar 

  16. N. Hartmann, G. Hartmann, R. Heider, M.S. Wagner, M. Ilchen, J. Buck, A.O. Lindahl, C. Benko, J. Grünert, J. Krzywinski et al., Nat. Photon. 12, 215 (2018)

    Article  ADS  Google Scholar 

  17. P.K. Maroju, C. Grazioli, M. Di Fraia, M. Moioli, D. Ertel, H. Ahmadi, O. Plekan, P. Finetti, E. Allaria, L. Giannessi, G. De Ninno, C. Spezzani et al., Nature 578, 386 (2020)

    Article  ADS  Google Scholar 

  18. J. Bierbach, C. Rödel, M. Yeung, B. Dromey, T. Hahn, A.G. Pour, S. Fuchs, A.E. Paz, S. Herzer, S. Kuschel, O. Jäckel, M.C. Kaluza, G. Pretzler, M. Zepf, G.G. Paulus, New J. Phys. 14, 065005 (2012)

    Article  ADS  Google Scholar 

  19. Y. Nomura, R. Hörlein, P. Tzallas, B. Dromey, S. Rykovanov, Z. Major, J. Osterhoff, S. Karsch, L. Veisz, M. Zepf, D. Charalambidis, F. Krausz, G.D. Tsakiris, Nat. Phys. 5, 124 (2009)

    Article  Google Scholar 

  20. R. Hörlein, Y. Nomura, P. Tzallas, S.G. Rykovanov, B. Dromey, J. Osterhoff, Z. Major, S. Karsch, L. Veisz, M. Zepf, D. Charalambidis, F. Krausz, G.D. Tsakiris, New J. Phys. 12, 043020 (2010)

    Article  ADS  Google Scholar 

  21. L. Chopineau, A. Denoeud, A. Leblanc, E. Porat, P. Martin, H. Vincenti, F. Quéré, Nat. Phys. 17, 968 (2021)

    Article  Google Scholar 

  22. F. Quéré, H. George, Ph. Martin, Proc. SPIE 7359, 73590E (2009)

    Article  ADS  Google Scholar 

  23. C. Wu, L. Li, M. Yeung, S. Wu, S. Cousens, S. Tietze, B. Dromey, C. Zhou, S. Ruan, M. Zepf, Opt. Express 30, 389–402 (2022)

    Article  ADS  Google Scholar 

  24. K. Varjú, P. Johnsson, J. Mauritsson, T. Remetter, T. Ruchon, Y. Ni, F. Lépine, M. Kling, J. Khan, K.J. Schafer, M.J.J. Vrakking, A. L’Huillier, J. Phys. B At. Mol. Opt. Phys. 39, 3983 (2006)

    Article  ADS  Google Scholar 

  25. D.M.P. Holland et al., Nucl. Instrum. Methods 195, 331–337 (1982)

    Article  ADS  Google Scholar 

  26. V. Loriot, A. Marciniak, G. Karras, B. Schindler, G. Renois-Predelus, I. Compagnon, B. Concina, R. Brédy, G. Celep, C. Bordas, E. Constant, F. Lépine, J. Opt. (UK) 19, 114003 (2017)

    Article  ADS  Google Scholar 

  27. J.R. Fienup, Appl. Opt. 21, 2758–2769 (1982)

    Article  ADS  Google Scholar 

  28. A. Lévy, T. Ceccotti, P. D’Oliveira, F. Réau, M. Perdrix, F. Quéré, P. Monot, M. Bougeard, H. Lagadec, P. Martin, J.-P. Geindre, P. Audebert, Opt. Lett. 32, 310 (2007)

    Article  ADS  Google Scholar 

  29. N.G. Kling, D. Paul, A. Gura, G. Laurent, S. De, H. Li, Z. Wang, B. Ahn, C.H. Kim, T.K. Kim, I.V. Litvinyuk, C.L. Cocke, I. Ben-Itzhak, D. Kim, M.F. Kling, J. Instrum. 9, P0505 (2014)

    Article  Google Scholar 

  30. G.A. Garcia, L. Nahon, C.J. Harding, E.A. Mikajlo, I. Powis, Rev. Sci. Instrum. 76, 053302 (2005)

    Article  ADS  Google Scholar 

  31. S. Kahaly, S. Monchocé, H. Vincenti, T. Dzelzainis, B. Dromey, M. Zepf, Ph. Martin, F. Quéré, Phys. Rev. Lett. 110, 175001 (2013)

    Article  ADS  Google Scholar 

  32. K. Codling, R.G. Houlgate, J.B. West, P.R. Woodruff, J. Phys. B 9, L83 (1976)

    Article  ADS  Google Scholar 

  33. G.A. Garcia, L. Nahon, L. Powis, Rev. Sci. Instrum. 75, 4989 (2004)

    Article  ADS  Google Scholar 

  34. S. Heissler, P. Tzallas, J.M. Mikhailova, K. Khrennikov, L. Waldecker, F. Krausz, S. Karsch, D. Charalambidis, G.D. Tsakiris, New J. Phys. 14, 043025 (2012)

    Article  ADS  Google Scholar 

  35. C. Bourassin-Bouchet, S. de Rossi, F. Delmotte, P. Chavel, J. Opt. Soc. Am. A 27, 1395 (2010)

    Article  ADS  Google Scholar 

  36. C. Bourassin-Bouchet, M. Mang, F. Delmotte, P. Chavel, S. de Rossi, Opt. Express 21, 2506–2520 (2013)

    Article  ADS  Google Scholar 

  37. O. Peyrusse, M. Busquet, J.C. Kieffer, Z. Jiang, C.Y. Côté, Phys. Rev. Lett. 75, 3862 (1995)

    Article  ADS  Google Scholar 

  38. NIST Atomic Spectra Database. https://www.nist.gov/pml/atomic-spectra-database. Accessed May 2022

Download references

Funding

This project has received funding from Labex PALM (ANR-10-LABX-0039-PALM), LIDEX OPT2X, Sesame PULSE- X, Laserlab-Europe (EU-H2020 871124). We gratefully acknowledge helpful discussions with L. Nahon (SOLEIL Synchrotron) as well as the invaluable support of engineers and technicians, in particular J. Guigand, C. Charrière, N. Tournier at ISMO, and F. Réau, P. d’Oliveira at CEA-LIDYL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Klisnick.

Additional information

The original online version of this article was revised: The funding information section was missing from this article.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dakroub, L., Sinyakova, T., Cubaynes, D. et al. Laser-dressed photoionization for the temporal characterization of attosecond pulses generated from plasma mirrors. Eur. Phys. J. Spec. Top. 232, 2055–2067 (2023). https://doi.org/10.1140/epjs/s11734-023-00817-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-023-00817-5

Navigation