Skip to main content
Log in

Quantitative comparison of single- and two-particle properties in the cuprates

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract.

We explore the strong variations of the electronic properties of copper-oxygen compounds across the doping phase diagram in a quantitative way. To this end we calculate the electronic Raman response on the basis of results from angle-resolved photoemission spectroscopy (ARPES). In the limits of our approximations we find agreement on the overdoped side and pronounced discrepancies at lower doping. In contrast to the successful approach for the transport properties at low energies, the Raman and the ARPES data cannot be reconciled by adding angle-dependent momentum scattering. We discuss possible routes towards an explanation of the suppression of spectral weight close to the (π, 0) points which sets in abruptly close to 21% doping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.G. Bednorz, K.A. Müller, Z. Phys. B 64, 189 (1986)

    Article  ADS  Google Scholar 

  2. G.M. Eliashberg, Zh. Eksperimen. i Teor. Fiz. 38, 966 (1960)

    Google Scholar 

  3. G.M. Eliashberg, Sov. Phys. JETP 11, 696 (1960)

    Google Scholar 

  4. J.P. Carbotte, Rev. Mod. Phys. 62, 1062 (1990)

    Article  Google Scholar 

  5. J.P. Carbotte, F. Marsiglio, The Physics of Superconductors (Springer, Berlin, 2003), p. 233

  6. S. Engelsberg, J.R. Schrieffer, Phys. Rev. 131, 993 (1963)

    Article  ADS  Google Scholar 

  7. P.B. Allen, M.L. Cohen, Phys. Rev. Lett. 29, 1593 (1972)

    Article  ADS  Google Scholar 

  8. T. Cuk, et al., Phys. Stat. Sol. (b) 242, 11 (2005)

    Article  ADS  Google Scholar 

  9. W.L. McMillan, J.M. Rowell, Phys. Rev. Lett. 14, 108 (1965)

    Article  ADS  Google Scholar 

  10. J. Carbotte, E. Schachinger, D.N. Basov, Nature 401, 354 (1999)

    Article  ADS  Google Scholar 

  11. A.A. Kordyuk, et al., Eur. Phys. J. Special Topics 188, 153 (2010)

    Article  Google Scholar 

  12. P.W. Anderson, Science 237, 1196 (1987)

    Article  ADS  Google Scholar 

  13. P.A. Lee, Naoto Nagaosa, Xiao-Gan Wen, Rev. Mod. Phys. 78, 17 (2006)

    Article  ADS  Google Scholar 

  14. P.W. Anderson, Science 317, 1705 (2007)

    Article  Google Scholar 

  15. T. Dahm, et al., Nat. Phys. 5, 217 (2009)

    Article  Google Scholar 

  16. B. Muschler, et al., Eur. Phys. J. Special Topics 188, 131 (2010)

    Article  ADS  Google Scholar 

  17. F. Venturini, Doctoral Thesis, Technische Universität München, 2003

  18. T.P. Devereaux, R. Hackl, Rev. Mod. Phys. 79, 175 (2007)

    Article  ADS  Google Scholar 

  19. D.J. Scalapino, Superconductivity I, edited by R.D.Parks (Marcel Dekker, New York, 1969), p. 449

  20. G. Mahan, Many-Particle Physics (Kluwer Academic/Plenum Publishers, New York, 2000)

  21. M. Eschrig, M.R. Norman, Phys. Rev. B 67, 144503 (2003)

    Article  ADS  Google Scholar 

  22. A.V. Chubukov, M.R. Norman, Phys. Rev. B 70, 174505 (2004)

    Article  ADS  Google Scholar 

  23. C.M. Varma, et al., Phys. Rev. Lett. 63, 1996 (1989)

    Article  ADS  Google Scholar 

  24. D. Inosov, et al., Phys. Rev. B 75, 172505 (2007)

    Article  ADS  Google Scholar 

  25. F. Venturini, et al., Phys. Rev. Lett. 89, 107003 (2002)

    Article  ADS  Google Scholar 

  26. S. Blanc, et al., Phys. Rev. B 80, 140502(R) (2009)

    Article  MathSciNet  ADS  Google Scholar 

  27. A. Damascelli, Z. Hussain, Z.-X. Shen, Rev. Mod. Phys. 75, 473 (2003)

    Article  ADS  Google Scholar 

  28. T. Yoshida, et al., Phys. Rev. B 74, 224510 (2006)

    Article  ADS  Google Scholar 

  29. J. Chang, et al., Phys. Rev. B 78, 205103 (2008)

    Article  ADS  Google Scholar 

  30. S. Nakamae, et al., Phys. Rev. B 68, 100502 (2003)

    Article  ADS  Google Scholar 

  31. C.M. Varma, Phys. Rev. B 55, 14554 (1997)

    Article  ADS  Google Scholar 

  32. Y. Li, et al., Nature 455, 372 (2008)

    Article  ADS  Google Scholar 

  33. S. Caprara, et al., Phys. Rev. B 59, 14980 (1999)

    Article  ADS  Google Scholar 

  34. M. Grilli, et al., Physica B 404, 3070 (2009)

    Article  ADS  Google Scholar 

  35. W. Metzner, D. Rohe, S. Andergasen, Phys. Rev. Lett. 91, 066402 (2003)

    Article  ADS  Google Scholar 

  36. J.M. Tranquada, et al., Nature 375, 561 (1995)

    Article  ADS  Google Scholar 

  37. J.M. Tranquada, et al., Nature 429, 535 (2004)

    Article  ADS  Google Scholar 

  38. H.H. Klauss, et al., Phys. Rev. Lett. 85, 4590 (2000)

    Article  ADS  Google Scholar 

  39. J. Fink, et al., Phys. Rev. B 79, 100502 (2009)

    Article  ADS  Google Scholar 

  40. V. Hinkov, et al., Eur. Phys. J. Special Topics 188, 113 (2010)

    Article  Google Scholar 

  41. M. Vojta, Eur. Phys. J. Special Topics 188, 49 (2010)

    Article  Google Scholar 

  42. H. Alloul, T. Ohno, P. Mendels, Phys. Rev. Lett. 63, 1700 (1989)

    Article  ADS  Google Scholar 

  43. C.C. Holmes, et al., Phys. Rev. Lett. 71, 1645 (1993)

    Article  ADS  Google Scholar 

  44. C. Bernhard, et al., Phys. Rev. Lett. 80, 1767 (1998)

    ADS  Google Scholar 

  45. D.N. Basov, T. Timusk, Rev. Mod. Phys. 77, 721 (2003)

    Article  ADS  Google Scholar 

  46. D. van der Marel, et al., Nature 425, 271 (2003)

    Article  ADS  Google Scholar 

  47. N.E. Hussey, Eur. Phys. J. B 31, 495 (2003)

    Article  ADS  Google Scholar 

  48. R.A. Cooper, et al., Science 323, 603 (2009)

    Article  ADS  Google Scholar 

  49. O.K. Andersen, et al., J. Phys. Chem. Solids 56, 1573 (2009)

    Article  ADS  Google Scholar 

  50. T.P. Devereaux, Phys. Rev. B 68, 094503 (2003)

    Article  ADS  Google Scholar 

  51. A.P. Kampf, T.P. Devereaux, Phys. Rev. B 56, 2360 (1997)

    Article  ADS  Google Scholar 

  52. E. Abrahams, C.M. Varma, PNAS 97, 5714 (2000)

    Article  ADS  Google Scholar 

  53. M. Abdel-Jawad, et al., Phys. Rev. Lett. 99, 107002 (2007)

    Article  ADS  Google Scholar 

  54. C. Kendziora, A. Rosenberg, Phys. Rev. B 52, R9867 (1995)

    Article  ADS  Google Scholar 

  55. R. Nemetschek, et al., Phys. Rev. Lett. 78, 4837 (1997)

    Article  ADS  Google Scholar 

  56. S. Sugai, T. Hosokawa, Phys. Rev. Lett. 85, 1112 (2000)

    Article  ADS  Google Scholar 

  57. M. Opel, et al., Phys. Rev. B 61, 9752 (2000)

    Article  ADS  Google Scholar 

  58. F. Venturini, et al., J. Phys. Chem. Solids 63, 2345 (2002)

    Article  ADS  Google Scholar 

  59. R. Hackl, et al., Adv. Solid State Phys. 45, 227 (2005)

    Article  Google Scholar 

  60. T.P. Devereaux, Phys. Rev. Lett 79, 175 (1995)

    Google Scholar 

  61. M. Le Tacon, et al., Nature Physics 2, 537 (2006)

    Article  ADS  Google Scholar 

  62. N. Munnikes, et al. (preprint) [arXiv:0901.3448]

  63. A.F. Goncharov, V.V. Struzhkin, J. Raman Spectrosc. 34, 532 (2003)

    Article  ADS  Google Scholar 

  64. H. Eisaki, et al., Phys. Rev. B 69, 064512 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Hackl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prestel, W., Venturini, F., Muschler, B. et al. Quantitative comparison of single- and two-particle properties in the cuprates. Eur. Phys. J. Spec. Top. 188, 163–171 (2010). https://doi.org/10.1140/epjst/e2010-01304-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2010-01304-2

Keywords

Navigation