skip to main content
article

Spacetime faces: high resolution capture for modeling and animation

Published:01 August 2004Publication History
Skip Abstract Section

Abstract

We present an end-to-end system that goes from video sequences to high resolution, editable, dynamically controllable face models. The capture system employs synchronized video cameras and structured light projectors to record videos of a moving face from multiple viewpoints. A novel spacetime stereo algorithm is introduced to compute depth maps accurately and overcome over-fitting deficiencies in prior work. A new template fitting and tracking procedure fills in missing data and yields point correspondence across the entire sequence without using markers. We demonstrate a data-driven, interactive method for inverse kinematics that draws on the large set of fitted templates and allows for posing new expressions by dragging surface points directly. Finally, we describe new tools that model the dynamics in the input sequence to enable new animations, created via key-framing or texture-synthesis techniques.

Skip Supplemental Material Section

Supplemental Material

References

  1. ALLEN, B., CURLESS, B., AND POPOVIC, Z. 2003. The space of human body shapes: reconstruction and parameterization from range scans. In SIGGRAPH Conference Proceedings, 587--594. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. ARIKAN, O., AND FORSYTH, D. A. 2002. Synthesizing constrained motions from examples. In SIGGRAPH Conference Proceedings, 483--490.Google ScholarGoogle Scholar
  3. BAKER, S., GROSS, R., AND MATTHEWS, I. 2003. Lucas-kanade 20 years on: A unifying framework: Part 3. Tech. Rep. CMU-RI-TR-03-35, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, November.Google ScholarGoogle Scholar
  4. BASU, S., OLIVER, N., AND PENTLAND, A. 1998. 3D lip shapes from video: A combined physical-statistical model. Speech Communication 26, 1, 131--148. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. BLACK, M. J., AND ANANDAN, P. 1993. Robust dense optical flow. In Proc. Int. Conf. on Computer Vision, 231--236.Google ScholarGoogle Scholar
  6. BLANZ, V., AND VETTER, T. 1999. A morphable model for the synthesis of 3D faces. IN SIGGRAPH Conference Proceedings, 187--194. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. BLANZ, V., BASSO, C., POGGIO, T., AND VETTER, T. 2003. Reanimating faces in images and video. In Proceedings of EUROGRAPHICS, vol. 22, 641--650.Google ScholarGoogle ScholarCross RefCross Ref
  8. BOUGUET, J.-Y. 2001. Camera Calibration Toolbox for Matlab. http://www.vision.caltech.edu/bouguetj/calib_doc/index.html.Google ScholarGoogle Scholar
  9. BRAND, M. 1999. Voice puppetry. In SIGGRAPH Conference Proceedings, 21--28. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. BRAND, M. 2001. Morphable 3D models from video. In Proc. IEEE Conf. on Computer Vision and Pattern Recognition, 456--463.Google ScholarGoogle ScholarCross RefCross Ref
  11. BREGLER, C., COVELL, M., AND SLANEY, M. 1997. Video rewrite: Visual speech synthesis from video. In SIGGRAPH Conference Proceedings, 353--360. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. BROOMHEAD, D. S., AND LOWE, D. 1988. Multivariable functional interpolation and adptive networks. Complex Systems 2, 321--355.Google ScholarGoogle Scholar
  13. CHAI, J., JIN, X., AND HODGINS, J. 2003. Vision-based control of 3D facial animation. In Proceedings of Eurographics/SIGGRAPH Symposium on Computer Animation, 193--206. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. COOTES, T. F., TAYLOR, C. J., COOPER, D. H., AND GRAHAM, J. 1995. Active shape models---their training and application. Computer Vision and Image Understanding 61, 1, 38--59. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. CURLESS, B., AND LEVOY, M. 1996. A volumetric method for building complex models from range images. In SIGGRAPH Conference Proceedings, 303--312. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. DAVIS, J., RAMAMOORTHI, R., AND RUSINKIEWICZ, S. 2003. Spacetime stereo: A unifying framework for depth from triangulation. In Proc. IEEE Conf. on Computer Vision and Pattern Recognition, 359--366.Google ScholarGoogle ScholarCross RefCross Ref
  17. DECARLO, D., AND METAXAS, D. 2002. Adjusting shape parameters using model-based optical flow residuals. IEEE Trans. on Pattern Analysis and Machine Intelligence 24, 6, 814--823. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. ESSA, I., BASU, S., DARRELL, T., AND PENTLAND, A. 1996. Modeling, tracking and interactive animation of faces and heads using input from video. In Proceedings of the Computer Animation, IEEE Computer Society, 68--79. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. EZZAT, T., GEIGER, G., AND POGGIO, T. 2002. Trainable videorealistic speech animation. In SIGGRAPH Conference Proceedings, 388--398. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. FAUGERAS, O. 1993. Three-Dimensional Computer Vision. MIT Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. GUENTER, B., GRIMM, C., WOOD, D., MALVAR, H., AND PIGHIN, F. 1998. Making faces. In SIGGRAPH Conference Proceedings, 55--66. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. HUANG, P. S., ZHANG, C. P., AND CHIANG, F. P. 2003. High speed 3-d shape measurement based on digital fringe projection. Optical Engineering 42, 1, 163--168.Google ScholarGoogle ScholarCross RefCross Ref
  23. JOSHI, P., TIEN, W. C., DESBRUN, M., AND PIGHIN, F. 2003. Learning controls for blend shape based realistic facial animation. In Proceedings of Eurographics/SIGGRAPH Symposium on Computer Animation, 187--192. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. KANADE, T., AND OKUTOMI, M. 1994. A stereo matching algorithm with an adaptive window: Theory and experiment. IEEE Trans. on Pattern Analysis and Machine Intelligence 16, 9, 920--932. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. KOVAR, L., GLEICHER, M., AND PIGHIN, F. 2002. Motion graphs. In SIGGRAPH Conference Proceedings, 473--482. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. KOZEN, D. C. 1992. The Design and Analysis of Algorithms. Springer. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. LEE, J., CHAI, J., REITSMA, P. S. S., HODGINS, J. K., AND POLLARD, N. S. 2002. Interactive control of avatars animated with human motion data. In SIGGRAPH Conference Proceedings, 491--500. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. LI, Y., WANG, T., AND SHUM, H.-Y. 2002. Motion texture: A two-level statistical model for character motion synthesis. In SIGGRAPH Conference Proceedings, 465--472. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. NAYAR, S. K., WATANABE, M., AND NOGUCHI, M. 1996. Real-time focus range sensor. IEEE Transactions on Pattern Analysis and Machine Intelligence 18, 12, 1186--1198. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. NOCEDAL, J., AND WRIGHT, S. J. 1999. Numerical Optimization. Springer.Google ScholarGoogle Scholar
  31. PARKE, F. I. 1972. Computer generated animation of faces. In Proceedings of the ACM annual conference, ACM Press, 451--457. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. PIGHIN, F., HECKER, J., LISCHINSKI, D., SALESIN, D. H., AND SZELISKI, R. 1998. Synthesizing realistic facial expressions from photographs. In SIGGRAPH Conference Proceedings, 75--84. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. PIGHIN, F., SALESIN, D. H., AND SZELISKI, R. 1999. Resynthesizing facial animation through 3D model-based tracking. In Proc. Int. Conf. on Computer Vision, 143--150.Google ScholarGoogle ScholarCross RefCross Ref
  34. PRESS, W. H., FLANNERY, B. P., TEUKOLSKY, S. A., AND VETTERLING, W. T. 1993. Numerical Recipes in C: The Art of Scientific Computing, 2nd ed. Cambridge University Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. PROESMANS, M., GOOL, L. V., AND OOSTERLINCK, A. 1996. One-shot active 3D shape acquization. In Proc. Int. Conf. on Pattern Recognition, 336--340. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. PULLI, K., AND GINZTON, M. 2002. Scanalyze. http://graphics.stanford.edu/software/scanalyze/.Google ScholarGoogle Scholar
  37. RASKAR, R., WELCH, G., CUTTS, M., LAKE, A., STESIN, L., AND FUCHS, H. 1998. The office of the future: A unified approach to image-based modeling and spatially immersive displays. In SIGGRAPH Conference Proceedings, 179--188. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. SCHARSTEIN, D., AND SZELISKI, R. 2002. A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. Int. J. on Computer Vision 47, 1, 7--42. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. SCHÖDL, A., AND ESSA, I. A. 2002. Controlled animation of video sprites. In Proceedings of Eurographics/SIGGRAPH Symposium on Computer Animation, ACM Press, 121--127. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. SCHÖDL, A., SZELISKI, S., SALESIN, D. H., AND ESSA, I. 2000. Video textures. In SIGGRAPH Conference Proceedings, 489--498. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. TORRESANI, L., YANG, D. B., ALEXANDER, E. J., AND BREGLER, C. 2001. Tracking and modeling non-rigid objects with rank constraints. In Proc. IEEE Conf. on Computer Vision and Pattern Recognition, 493--500.Google ScholarGoogle ScholarCross RefCross Ref
  42. VEDULA, S., BAKER, S., RANDER, P., COLLINS, R., AND KANADE, T. 1999. Three-dimensional scene flow. In Proc. Int. Conf. on Computer Vision, 722--729. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. ZHANG, L., CURLESS, B., AND SEITZ, S. M. 2003. Spacetime stereo: Shape recovery for dynamic scenes. In Proc. IEEE Conf. on Computer Vision and Pattern Recognition, 367--374.Google ScholarGoogle ScholarCross RefCross Ref
  44. ZHANG, Q., LIU, Z., GUO, B., AND SHUM, H. 2003. Geometry-driven photo-realistic facial expression synthesis. In Proceedings of Eurographics/SIGGRAPH Symposium on Computer Animation, 177--186. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Spacetime faces: high resolution capture for modeling and animation

              Recommendations

              Comments

              Login options

              Check if you have access through your login credentials or your institution to get full access on this article.

              Sign in

              Full Access

              • Published in

                cover image ACM Transactions on Graphics
                ACM Transactions on Graphics  Volume 23, Issue 3
                August 2004
                684 pages
                ISSN:0730-0301
                EISSN:1557-7368
                DOI:10.1145/1015706
                Issue’s Table of Contents

                Copyright © 2004 ACM

                Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

                Publisher

                Association for Computing Machinery

                New York, NY, United States

                Publication History

                • Published: 1 August 2004
                Published in tog Volume 23, Issue 3

                Permissions

                Request permissions about this article.

                Request Permissions

                Check for updates

                Qualifiers

                • article

              PDF Format

              View or Download as a PDF file.

              PDF

              eReader

              View online with eReader.

              eReader