skip to main content
article

Error-resilient transmission of 3D models

Published:01 April 2005Publication History
Skip Abstract Section

Abstract

In this article, we propose an error-resilient transmission method for progressively compressed 3D models. The proposed method is scalable with respect to both channel bandwidth and channel packet-loss rate. We jointly design source and channel coders using a statistical measure that (i) calculates the number of both source and channel coding bits, and (ii) distributes the channel coding bits among the transmitted refinement levels in order to maximize the expected decoded model quality. In order to keep the total number of bits before and after applying error protection the same, we transmit fewer triangles in the latter case to accommodate the channel coding bits. When the proposed method is used to transmit a typical model over a channel with a 10% packet-loss rate, the distortion (measured using the Hausdorff distance between the original and the decoded models) is reduced by 50% compared to the case when no error protection is applied.

References

  1. Al-Regib, G., Altunbasak, Y., and Rossignac, J. 2002. An unequal error protection method for progressively compressed 3-D models. In The Proceedings of the IEEE International Conference on Acoustics Speech and Signal Processing. Vol. 2. Orlando, FL, 2041--2044.Google ScholarGoogle Scholar
  2. Bajaj, C. L., Cutchin, S., Pascucci, V., and Zhuang, G. 1998. Error resilient transmission of compressed VRML. In Tech. Rep., TICAM, The University of Texas at Austin, 1998. Austin, TX.Google ScholarGoogle Scholar
  3. Bischoff, S. and Kobbelt, L. 2002. Towards robust broadcasting of geometry data. Computers & Graphics, 2b, 5, 665--675.Google ScholarGoogle Scholar
  4. Blahut, R. E. 1983. Theory and practice of Error Control Codes. Addison-Wesley, Reading, MA.Google ScholarGoogle Scholar
  5. Choi, J. S., Kim, Y. H., Lee, H.-J., Park, I.-S., Lee, M. H., and Ahn, C. 2000. Geometry compression of 3-D mesh models using predictive two-stage quantization. IEEE Trans. Circ. Syst. Video Tech. 10, 2 (March), 312--322. Google ScholarGoogle Scholar
  6. Floyd, S. and Fall, K. 1999. Promoting the use of end-to-end congestion control in the Internet. IEEE/ACM Trans. Netw. 7, 4 (August), 458--472. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Garland, M. and Heckbert, P. 1997. Surface simplification using quadric error metrics. In Proceedings of ACM SIGGRAPH'97. 209--216. Google ScholarGoogle Scholar
  8. Girod, B., Stuhlmuller, K., Link, M., and Horn, U. 1999. Packet loss resilient internet video streaming. In Proceedings of SPIE Visual Communications and Image Processing. San Jose, CA, 833--844.Google ScholarGoogle Scholar
  9. Hoffman, D. G., Leonard, D. A., Lindner, C. C., Phelps, K. T., Rodger, C. A., and Wall, J. R. 1991. Coding Theory: The Essentials. Marcel Dekker, Inc., New York. Google ScholarGoogle Scholar
  10. Hoppe, H. 1996. Progressive meshes. In Proceedings ACM SIGGRAPH'96. 99--108. Google ScholarGoogle Scholar
  11. Hoppe, H. 1998. Efficient implementation of progressive meshes. Microsoft Research Tech. Rep. (MSR-TR-98-2).Google ScholarGoogle Scholar
  12. Horn, U., Stuhlmuller, K., Link, M., and Girod, B. 1999. Robust internet video transmission based on scalable coding and unequal error protection. Signal Processing: Image Communications 15, 77--94.Google ScholarGoogle ScholarCross RefCross Ref
  13. Mohr, A. E., Riskin, E. A., and Ladner, R. E. 2000. Unequal loss protection: Graceful degradation of image quality over packet erasure channels through forward error correction. IEEE J. Selected Areas in Comm. 18, 6 (June), 819--828. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Pajarola, R. and Rossignac, J. 2000. Compressed progressive meshes. IEEE Trans. Visual. Comput. Graph. 6, 1 (January--March), 79--93. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Peterson, L. L. and Davie, B. S. 2000. Computer Networks. Academic Press, CA. Google ScholarGoogle Scholar
  16. Ronford, R. and Rossignac, J. 1996. Full-range approximations of triangulated polyhedra. In Proceedings of Eurographics'96. Vol. 15-3. C--67.Google ScholarGoogle Scholar
  17. Rossignac, J. 1999. Edgebreaker: connectivity compression for triangle meshes. IEEE Trans. Visual. Comput. Graph. 5, 1 (January), 47--61. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Rossignac, J. 2000. Shape complexity and compression. In Eurographics'00.Google ScholarGoogle Scholar
  19. Taubin, G., Gueziec, A., Horn, W., and Lazarus, F. 1998. Progressive forest split compression. In Proceedings of SIGGRAPH'98. 123--132. Google ScholarGoogle Scholar
  20. Taubin, G. and Rossignac, J. 1998. Geometric compression through topological surgery. ACM Trans. Graph. 17, 2 (April), 84--115. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Touma, C. and Gotsman, C. 1998. Triangle mesh compression. In Proceedings of Graphics Interface. Vancouver, Canada.Google ScholarGoogle Scholar
  22. Wang, Y., Ostermann, J., and Zhang, Y.-Q. 2002. Video processing and Communications. Prentice Hall, NJ. Google ScholarGoogle Scholar
  23. Wang, Y. and Zhu, Q.-F. 1998. Error control and concealment for video communications: A review. In Proceed. IEEE. 974--997.Google ScholarGoogle Scholar
  24. Wicker, S. B. 1995. Error Control Systems for Digital Communication and Storage. Prentice Hall, NJ. Google ScholarGoogle Scholar
  25. Yan, Z., Kumar, S., and Kuo, C.-C. J. 2001. Error resilient coding of 3-D graphic models via adaptive mesh segmentation. IEEE Trans. Circ. Syst. Video Tech. 11, 7 (July). Google ScholarGoogle Scholar
  26. Yan, Z., Kumar, S., Li, J., and Kuo, C.-C. 1999. Robust encoding of 3D mesh using data partitioning. In Proceedings of the 1999 IEEE International Symposium on Circuits and Systems, ISCAS'99. Vol. 4. 495--498.Google ScholarGoogle Scholar

Index Terms

  1. Error-resilient transmission of 3D models

            Recommendations

            Comments

            Login options

            Check if you have access through your login credentials or your institution to get full access on this article.

            Sign in

            Full Access

            PDF Format

            View or Download as a PDF file.

            PDF

            eReader

            View online with eReader.

            eReader