skip to main content
article

Discontinuous fluids

Published:01 July 2005Publication History
Skip Abstract Section

Abstract

At interfaces between different fluids, properties such as density, viscosity, and molecular cohesion are discontinuous. To animate small-scale details of incompressible viscous multi-phase fluids realistically, we focus on the discontinuities in the state variables that express these properties. Surface tension of both free and bubble surfaces is modeled using the jump condition in the pressure field; and discontinuities in the velocity gradient field. driven by viscosity differences, are also considered. To obtain derivatives of the pressure and velocity fields with sub-grid accuracy, they are extrapolated across interfaces using continuous variables based on physical properties. The numerical methods that we present are easy to implement and do not impact the performance of existing solvers. Small-scale fluid motions, such as capillary instability, breakup of liquid sheets, and bubbly water can all be successfully animated.

Skip Supplemental Material Section

Supplemental Material

pps063.mp4

mp4

27.2 MB

References

  1. Brackbill, J. U., Kothe, D. B., and Zemach, C. 1992. A continuum method for modeling surface tension. Journal of Computational Physics, 335--354. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Carlson, M., Mucha, P., Horn, B. V., and Turk, G. 2002. Melting and flowing. In ACM SIGGRAPH Symposium on Computer Animation, 167--174. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Chorin, A. J. 1967. A numerical method for solving incompressible viscous flow problems. Journal of Computational Physics 2, 12--16.Google ScholarGoogle ScholarCross RefCross Ref
  4. De Sousa, F., Mangiavacchi, N., Nonato, L., Castelo, A., Tome, M., Ferreira, V., Cuminato, J., and McKee, S. 2004. A front-tracking/front-capturing method for the simulation of 3d multi-fluid flows with free-surfaces. Journal of Computational Physics 198, 469--499. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Dyke, M. V. 1982. An Album of Fluid Motion. The Parabolic Press.Google ScholarGoogle Scholar
  6. Enright, D., Marschner, S., and Fedkiw, R. 2002. Animation and rendering of complex water surfaces. ACM Transactions on Graphics (Proceedings of ACM SIGGRAPH 2002) 21, 3, 736--744. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Enright, D., Losasso. F., and Fedkiw, R. 2005. A fast and accurate semi-lagrangian particle level set method. Computers and Structures, 83, 479--490. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Fattal, R., and Lischinski, D. 2004. Target-driven smoke animation. ACM Transactions on Graphics (Proceedings of ACM SIGGRAPH 2004) 23, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Fedkiw, R., Aslam, T., Merriman, B., and Osher, S. 1999. A non-oscillatory eulerian approach to interfaces in multimaterial flows (the ghost fluid method). Journal of Computational Physics 152, 457--492. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Fedkiw, R., Stam, J., and Jensen, H. W. 2001. Visual simulation of smoke. In Proceedings of SIGGRAPH 2001, 15--22. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Foster, N., and Fedkiw, R. 2001. Practical animation of liquids. In Proceedings of ACM SIGGRAPH 2001, 23--30. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Foster, N., and Metaxas, D. 1996. Realistic animation of liquids. Graphical Models and Image Processing 58, 5, 471--483. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Goktekin, T. G., Bargteil, A. W., and O'Brien, J. F. 2004. A method for animating viscoelastic fluids. ACM Transactions on Graphics (Proceedings of ACM SIGGRAPH 2004) 23, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Greenwood, S., and House, D. 2004. Better with bubbles: Enhancing the visual realism of simulated fluid. In ACM SIGGRAPH/Eurographics symposium on Computer animation. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Harlow, F. H., and Welch, J. E. 1965. Numerical calculation of time-dependent viscous incompressible flow of fluid with free surfaces. Physics of Fluids 8, 2182--2189.Google ScholarGoogle ScholarCross RefCross Ref
  16. Hong, J.-M., and Kim, C.-H. 2003. Animation of bubbles in liquid. Computer Graphics Forum (Eurographics 2003 Proceedings) 22, 3, 253--262.Google ScholarGoogle Scholar
  17. Hong, J.-M., and Kim, C.-H. 2004. Controlling fluid animation with geometric potential. Computer Animation and Virtual Worlds 15, 147--157. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Kang, M., Fedkiw, R. P., and Liu, X.-D. 2000. A boundary condition capturing method for multiphase incompressible flow. Journal of Scientific Computing 15, 323--360. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Liu, X.-D., Fedkiw, R. P., and Kang, M.-J. 2000. A boundary condition capturing method for poisson's equation on irregular domain. Journal of Computational Physics 172, 71--98. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Losasso, F., Fedkiw, R., and Osher, S. 2004. Spatially adaptive techniques for level set methods and incompressible flow. Computers and FluidsGoogle ScholarGoogle Scholar
  21. Losasso, F., Gibou, F., and Fedkiw, R. 2004. Simulating water and smoke with an octree data structure. ACM Transactions on Graphics (Proceedings of ACM SIGGRAPH 2004) 23, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. McNamara, A., Treuille, A., Popovic, Z., and Stam, J. 2004. Fluid control using the adjoint method. ACM Transactions on Graphics (Proceedings of ACM SIGGRAPH 2004) 23, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Nguyen, D., Fedkiw, R., and Jensen, H. 2002. Physically based modeling and animation of fire. ACM Transactions on Graphics (Proceedings of ACM SIGGRAPH 2002) 21, 3, 721--728. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Osher, S., and Fedkiw, R. 2002. Level Set Methods and Dynamic Implicit Surfaces. Springer-Verlag.Google ScholarGoogle Scholar
  25. Rasmussen, N., Enright, D., Nguyen, D., Marino, S., Sumner, N., Geiger, W., Hoon, S., and Fedkiw, R. 2004. Directable photorealistic liquids. In ACM SIGGRAPH Symposium on Computer Animation, 193--202. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Saad, Y. 1996. Iterative Methods for Sparse Linear Systems. PWS Publishing. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Song, O.-Y., Shin, H.-C., and Ko, H.-S. 2005. Stable but non-dissipative water. ACM Transactions on Graphics 24, 1. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Stam, J. 1999. Stable fluids. In Proceedings of ACM SIGGRAPH 1999, 121--128. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Sussman, M. 2003. A second order coupled level set and volume-of-fluid method for computing growth and collapse of vapor bubbles. Journal of Computational Physics 187, 110--136. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Takahashi, T., Fujii, H., Kunimatsu, A., Hiwada, K., Saito, T., Tanaka, K., and Ueki, H. 2003. Realistic animation of fluid with splash and foam. Computer Graphics Forum (In Eurographics 2003 Proceedings) 22, 3, 391--400.Google ScholarGoogle Scholar
  31. Treuille, A., McNamara, A., Popović, Z., and Stam, J. 2003. Keyframe control of smoke simulations. ACM Transactions on Graphics (Proceedings of ACM SIGGRAPH 2003) 22, 3, 716--723. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Tryggvason, G., Bunner, B., Esmaeeli, A., Juric, D., Alrawahi, N., Tauber, W., Han, J., Nas, S., and Jan, Y.-J. 2001. A front-tracking method for the computations of multi-phase flow. Journal of Computational Physics 169, 708--759. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Discontinuous fluids

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Transactions on Graphics
          ACM Transactions on Graphics  Volume 24, Issue 3
          July 2005
          826 pages
          ISSN:0730-0301
          EISSN:1557-7368
          DOI:10.1145/1073204
          Issue’s Table of Contents

          Copyright © 2005 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 1 July 2005
          Published in tog Volume 24, Issue 3

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • article

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader