skip to main content
article

Meshless animation of fracturing solids

Published:01 July 2005Publication History
Skip Abstract Section

Abstract

We present a new meshless animation framework for elastic and plastic materials that fracture. Central to our method is a highly dynamic surface and volume sampling method that supports arbitrary crack initiation, propagation, and termination, while avoiding many of the stability problems of traditional mesh-based techniques. We explicitly model advancing crack fronts and associated fracture surfaces embedded in the simulation volume. When cutting through the material, crack fronts directly affect the coupling between simulation nodes, requiring a dynamic adaptation of the nodal shape functions. We show how local visibility tests and dynamic caching lead to an efficient implementation of these effects based on point collocation. Complex fracture patterns of interacting and branching cracks are handled using a small set of topological operations for splitting, merging, and terminating crack fronts. This allows continuous propagation of cracks with highly detailed fracture surfaces, independent of the spatial resolution of the simulation nodes, and provides effective mechanisms for controlling fracture paths. We demonstrate our method for a wide range of materials, from stiff elastic to highly plastic objects that exhibit brittle and/or ductile fracture.

Skip Supplemental Material Section

Supplemental Material

pps067.mp4

mp4

39.3 MB

References

  1. Alexa, M., and Adamson, A. 2004. On normals and projection operators for surfaces defined by point sets. In Proceedings of Eurographics Symposium on Point-Based Graphics, 150--155. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Anderson, T. L. 1995. Fracture Mechanics. CRC Press.Google ScholarGoogle Scholar
  3. Belytschko. T., Lu. Y., and Gu, L. 1994. Element-free galerkin methods. Int. J. Numer. Meth. Engng 37, 229--256.Google ScholarGoogle ScholarCross RefCross Ref
  4. Belytschko. T., Krongauz, Y., Organ, D., Fleming, M., and Krysl, P. 1996. Meshless methods: An overview and recent developments. Comp. Meth. in Appl. Mech. Eng. 139, 3.Google ScholarGoogle ScholarCross RefCross Ref
  5. Belytschko. T., Chen, H., Xu, J., and Zi, G. 2003. Dynamic crack propagation based on loss of hyperbolicity and a new discontinuous enrichment. Int. J. Numer. Meth. Engng 58, 1873--1905.Google ScholarGoogle ScholarCross RefCross Ref
  6. Bielser. D., Glardon, P., Teschner, M., and Gross, M. 2003. A state machine for real-time cutting of tetrahedral meshes. In Pacific Graphics, 377--386. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Carlson, M., Mucha, P., Van Horn III, B., and Turk, G. 2002. Melting and flowing. In Proceedings of the 2002 ACM SIGGRAPH Symposium on Computer Animation. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Chang, J., and Zhang, J. J. 2004. Mesh-free deformations. In Comp. Anim. Virtual Worlds. 211--218. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Chung, T. J. 1996. Applied Continuum Mechanics. Cambridge Univ. Press, NY.Google ScholarGoogle Scholar
  10. Debunne, G., Desbrun, M., Cani, M.-P., and Barr, A. 2001. Dynamic real-time deformations using space & time adaptive sampling. In Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH 2001, 31--36. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Desbrun, M., and Cani, M.-P. 1995. Animating soft substances with implicit surfaces. In Computer Graphics Proceedings, ACM SIGGRAPH, 287--290. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Desbrun, M., and Cani, M.-P. 1996. Smoothed particles: A new paradigm for animating highly deformable bodies. In 6th Eurographics Workshop on Computer Animation and Simulation '96, 61--76. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Desbrun, M., and Cani, M.-P. 1999. Space-time adaptive simulation of highly deformable substances. Tech. rep., INRIA Nr. 3829.Google ScholarGoogle Scholar
  14. Fedkiw, R., Stam, J., and Jensen, H. W. 2001. Visual simulation of smoke. In SIGGRAPH 2001, Computer Graphics Proceedings, ACM Press / ACM SIGGRAPH, E. Fiume, Ed., 15--22. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Feldman, B. E., O'Brien, J. F., and Arikan, O. 2003. Animating suspended particle explosions. In Proceedings of ACM SIGGRAPH 2003, 708--715. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Fernandez-Mendez, S., and Huerta, A. 2004. Imposing essential boundary conditions in mesh-free methods. Computer Methods in Applied Mechanics and Engineering 193, 1257--1275.Google ScholarGoogle ScholarCross RefCross Ref
  17. Fries, T. P., and Matthies, H. G. 2003. Classification and overview of meshfree methods. Tech. rep., TU Brunswick, Germany Nr. 2003--03.Google ScholarGoogle Scholar
  18. Guibas, L. J., and Marimont, D. H. 1995. Rounding arrangements dynamically. In SCG '95: Proceedings of the eleventh annual symposium on Computational geometry, ACM Press, 190--199. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Hirota, K., Tanoue, Y., and Kaneko, T. 1998. Generation of crack patterns with a physical model. Vis. Comput. 14, 126--137.Google ScholarGoogle ScholarCross RefCross Ref
  20. James, D. L., and Pai, D. K. 1999. Artdefo, accurate real time deformable objects. In Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH 99, 65--72. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Keiser, R., Müller, M., Heidelberger, B., Teschner, M., and Gross, M. 2004. Contact handling for deformable point-based objects. In Proceedings of VMV.Google ScholarGoogle Scholar
  22. Krysl, P., and Belytschko, T. 1999. The element free galerkin method for dynamic propagation of arbitrary 3-d cracks. Int. J. Numer. Meth. Engng 44, 767--800.Google ScholarGoogle ScholarCross RefCross Ref
  23. Lancaster, P., and Salkauskas. K. 1981. Surfaces generated by moving least squares methods. Mathematics of Computation 87, 141--158.Google ScholarGoogle ScholarCross RefCross Ref
  24. Liu, G. R. 2002. Mesh-Free Methods. CRC Press.Google ScholarGoogle Scholar
  25. Molino, N., Bao, Z., and Fedkiw, R. 2004. A virtual node algorithm for changing mesh topology during simulation. ACM Trans. Graph. 23, 3, 385--392. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Müller, M., and Gross. M. 2004. Interactive virtual materials. In Proceedings of the 2004 conference on Graphics interface, Canadian Human-Computer Communications Society, 239--246. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Müller, M., McMillan, L., Dorsey, J., and Jagnow, R. 2001. Real-time simulation of deformation and fracture of stiff materials. EUROGRAPHICS 2001 Computer Animation and Simulation Workshop, 27--34. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Müller, M., Keiser, R., Nealen, A., Pauly, M., Gross, M., and Alexa, M. 2004. Point based animation of elastic, plastic and melting objects. Proceedings of 2004 ACM SIGGRAPH Symposium on Computer Animation, 141--151. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Nguyen, D. Q., Fedkiw, R., and Jensen, H. W. 2002. Physically based modeling and animation of fire. In Proceedings of the 29th annual conference on Computer graphics and interactive techniques. ACM Press, 721--728. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. O'BRIEN, J. F., AND HODGINS, J. K. 1999. Graphical modeling and animation of brittle fracture. In Proceedings of SIGGRAPH 1999, 287--296. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. O'BRIEN, J. F., BARGTEIL, A. W., AND HODGINS, J. K. 2002. Graphical modeling and animation of ductile fracture. In Proceedings of SIGGRAPH 2002, 291--294. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Organ, D., Fleming, M., Terry. T., and Belytschko, T. 1996. Continuous meshless approximations for nonconvex bodies by diffraction and transparency. Computational Mechanics 18, 1--11.Google ScholarGoogle ScholarCross RefCross Ref
  33. Ortiz, M., and Pandolfi, A. 1999. Finite-deformation irreversible cohesive elements for three-dimensional crack-propagation analysis. Int. J. Num. Meth. Eng. 44, 1267--1282.Google ScholarGoogle ScholarCross RefCross Ref
  34. Pauly, M., Keiser, R., Kobbelt, L. P., and Gross, M. 2003. Shape modeling with point-sampled geometry. ACM Trans. Graph. 22, 3, 641--650. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Smith, J., Witkin, A., and Baraff, D. 2000. Fast and controllable simulation of the shattering of brittle objects. In Graphics Interface, 27--34.Google ScholarGoogle Scholar
  36. Sukumar, N., Mos, N., Moran, B., and Belytschko, T. 2000. Extended finite element method for three-dimensional crack modeling. International Journal for Numerical Methods in Engineering 48, 11, 1549--1570.Google ScholarGoogle ScholarCross RefCross Ref
  37. Terzopoulos, D., and Fleischer, K. 1988. Modeling inelastic deformation: viscolelasticity, plasticity, fracture. In Proceedings of the 15th annual conference on Computer graphics and interactive techniques, ACM Press, 269--278. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Terzopoulos, D., Platt, J., Barr, A., and Fleischer, K. 1987. Elastically deformable models. In Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH 87, 205--214. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Teschner, M., Heidelberger, B., Müller, M., Pomeranets, D., and Gross, M. 2003. Optimized spatial hashing for collision detection of deformable objects. In Proc. Vision, Modeling, Visualization VMV, 47--54.Google ScholarGoogle Scholar
  40. Ventura, G., Xu, J., and Belytschko, T. 2002. A vector level set method and new discontinuity approximations for crack growth by efg. International Journal for Numerical Methods in Engineering 54, 923--944.Google ScholarGoogle ScholarCross RefCross Ref
  41. Wicke, M., Teschner, M., and Gross, M. 2004. Csg tree rendering of point-sampled objects. In Proceedings of Pacific Graphics 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Zhang, X., Liu, X.-H., Song, K.-Z., and Lu, M.-W. 2001. Least-squares collocation meshless method. Int. J. Numer Meth. Engng 51, 1089--1100.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Meshless animation of fracturing solids

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Graphics
        ACM Transactions on Graphics  Volume 24, Issue 3
        July 2005
        826 pages
        ISSN:0730-0301
        EISSN:1557-7368
        DOI:10.1145/1073204
        Issue’s Table of Contents

        Copyright © 2005 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 1 July 2005
        Published in tog Volume 24, Issue 3

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • article

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader