skip to main content
10.1145/1128888.1128901acmconferencesArticle/Chapter ViewAbstractPublication PagesspmConference Proceedingsconference-collections
Article

Conformal virtual colon flattening

Published:06 June 2006Publication History

ABSTRACT

We present an efficient colon flattening algorithm using a conformal structure, which is angle-preserving and minimizes the global distortion. Moreover, our algorithm is general as it can handle high genus surfaces. First, the colon wall is segmented and extracted from the CT data set of the abdomen. The topology noise (i.e., minute handle) is located and removed automatically. The holomorphic 1-form, a pair of orthogonal vector fields, is then computed on the 3D colon surface mesh using the conjugate gradient method. The colon surface is cut along a vertical trajectory traced using the holomorphic 1-form. Consequently, the 3D colon surface is conformally mapped to a 2D rectangle. The flattened 2D mesh is then rendered using a direct volume rendering method accelerated with the GPU. Our algorithm is tested with a number of CT data sets of real pathological cases, and gives consistent results. We demonstrate that the shape of the polyps is well preserved on the flattened colon images, which provides an efficient way to enhance the navigation of a virtual colonoscopy system.

References

  1. Balogh, E., Sorantin, E., Nyul, L. G., Palagyi, K., Kuba, A., Werkgartner, G., and Spuller, E. 2002. Colon unraveling based on electronic field: Recent progress and future work. Proceedings SPIE 4681, 713--721.Google ScholarGoogle Scholar
  2. Bartrolì, A. V., Wegenkittl, R., König, A., and Gröller, E. 2001. Nonlinear virtual colon unfolding. IEEE Visualization, 411--418. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Bartrolì, A. V., Wegenkittl, R., König, A., Gröller, E., and Sorantin, E. 2001. Virtual colon flattening. VisSym Joint Eurographics - IEEE TCVG Symposium on Visualization, 127--136. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Bolz, J., Farmer, I., Grinspun, E., and Schröder, P. 2003. Sparse matrix solvers on the gpu: Conjugate gradients and multi-grid. ACM Transactions on Graphics 22, 3, 917--924. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. 2001. Introduction to Algorithms, Second Edition. The MIT Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Desbrun, M., Meyer, M., and Alliez, P. 2002. Intrinsic parameterization of triangle meshes. Eurographics (Computer Graphics Forum), 209--218.Google ScholarGoogle Scholar
  7. Dey, T. K., and Schipper, H. 1995. A new technique to compute polygonal schema for 2-manifolds with application to null-homotopy detection. Discrete and Computational Geometry 14, 93--110.Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Ei-Sana, J., and Varshney, A. 1997. Controlled simplification of genus for polygonal models. IEEE Visualization, 403--412. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Éric Colin De Verdière, and Lazarus, F. 2005. Optimal system of loops on an orientable surface. Discrete and Computational Geometry 33, 3, 507--534.Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Erickson, J., and Har-Peled, S. 2003. Optimally cutting a surface into a disk. ACM Symposium on Computational Geometry, 215--228. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Erickson, J., and Whittlesey, K. 2005. Greedy optimal homotopy and homology generators. ACM-SIAM Symposium on Discrete Algorithms, 1038--1046. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Floater, M. S., and Hormann, K. 2005. Surface parameterization: a tutorial and survey. Advances in Multiresolution for Geometric Modelling, 157--186.Google ScholarGoogle Scholar
  13. Gu, X., and Yao, S.-T. 2003. Global conformal surface parameterization. ACM Symposium on Geometry Processing, 127--137. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Gu, X., Gortler, S. J., and Hoppe, H. 2002. Geometry images. ACM Transactions on Graphics 21, 3, 355--361. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Guskov, I., and Wood, Z. 2001. Topological noise removal. Graphics Interface, 19--26. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Haker, S., Angenent, S., Tannenbaum, A., and Kikinis, R. 2000. Nondistorting flattening maps and the 3d visualization of colon ct images. IEEE Transactions on Medical Imaging 19, 7, 665--670.Google ScholarGoogle ScholarCross RefCross Ref
  17. Hong, L., Muraki, S., Kaufman, A., Bartz, D., and He, T. 1997. Virtual voyage: Interactive navigation in the human colon. Proceedings of ACM SIGGRAPH, 27--34. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Jost, J. 2002. Compact Riemann Surfaces. Springer.Google ScholarGoogle Scholar
  19. Lakare, S., Wan, M., Sato, M., and Kaufman, A. 2000. 3d digital cleansing using segmentation rays. IEEE Visualization, 37--44. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Lazarus, F., Pocchiola, M., Vegter, G., and Verroust, A. 2001. Computing a canonical polygonal schema of an orientable triangulated surface. ACM Symposium on Computational Geometry, 80--89. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Lévy, B., Petitjean, S., Ray, N., and Maillot, J. 2002. Least squares conformal maps for automatic texture atlas generation. ACM Transactions on Graphics 21, 3, 362--371. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Massey, W. S. 1990. Algebraic Topology: An Introduction. Springer.Google ScholarGoogle Scholar
  23. Paik, D. S., Beaulieu, C. F., Jeffrey, R. B. J., Karadi, C. A., and Napel, S. 2000. Visualization modes for ct colonography using cylindrical and planar map projections. Journal of Computer Assisted Tomography 24, 179--188.Google ScholarGoogle ScholarCross RefCross Ref
  24. Pinkall, U., and Polthier, K. 1993. Computing discrete minimal surfaces and their conjugates. Experimental Mathematics 2, 1, 15--36.Google ScholarGoogle ScholarCross RefCross Ref
  25. Reddy, J. N. 2004. An Introduction to Nonlinear Finite Element Analysis. Oxford University Press.Google ScholarGoogle Scholar
  26. Schoen, R., and Yau, S.-T. 1997. Lectures on Harmonic Maps. International Press.Google ScholarGoogle Scholar
  27. Wan, M., Liang, Z., Ke, Q., Hong, L., Bitter, I., and Kaufman, A. 2002. Automatic centerline extraction for virtual colonoscopy. IEEE Transactions on Medical Imaging 21, 1450--1460.Google ScholarGoogle ScholarCross RefCross Ref
  28. Wang, G., and Vannier, M. W. 1995. Gi tract unraveling by spiral ct. Proceedings SPIE 2434, 307--315.Google ScholarGoogle Scholar
  29. Wang, G., McFarland, E. G., Brown, B. P., and Vannier, M. W. 1998. Gi tract unraveling with curved cross section. IEEE Transactions on Medical Imaging 17, 318--322.Google ScholarGoogle ScholarCross RefCross Ref
  30. Wang, G., Dave, S. B., Brown, B. P., Zhang, Z., McFarland, E. G., Haller, J. W., and Vannier, M. W. 1999. Colon unraveling based on electronic field: Recent progress and future work. Proceedings SPIE 3660, 125--132.Google ScholarGoogle Scholar
  31. Zhang, N., Hong, W., and Kaufman, A. 2004. Dual contouring with topolgy-preserving simplification using enhanced cell representation. IEEE Visualization, 505--512. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Conformal virtual colon flattening

            Recommendations

            Comments

            Login options

            Check if you have access through your login credentials or your institution to get full access on this article.

            Sign in
            • Published in

              cover image ACM Conferences
              SPM '06: Proceedings of the 2006 ACM symposium on Solid and physical modeling
              June 2006
              235 pages
              ISBN:1595933581
              DOI:10.1145/1128888

              Copyright © 2006 ACM

              Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

              Publisher

              Association for Computing Machinery

              New York, NY, United States

              Publication History

              • Published: 6 June 2006

              Permissions

              Request permissions about this article.

              Request Permissions

              Check for updates

              Qualifiers

              • Article

            PDF Format

            View or Download as a PDF file.

            PDF

            eReader

            View online with eReader.

            eReader