skip to main content
article

Distributed weighted-multidimensional scaling for node localization in sensor networks

Published:01 February 2006Publication History
Skip Abstract Section

Abstract

Accurate, distributed localization algorithms are needed for a wide variety of wireless sensor network applications. This article introduces a scalable, distributed weighted-multidimensional scaling (dwMDS) algorithm that adaptively emphasizes the most accurate range measurements and naturally accounts for communication constraints within the sensor network. Each node adaptively chooses a neighborhood of sensors, updates its position estimate by minimizing a local cost function and then passes this update to neighboring sensors. Derived bounds on communication requirements provide insight on the energy efficiency of the proposed distributed method versus a centralized approach. For received signal-strength (RSS) based range measurements, we demonstrate via simulation that location estimates are nearly unbiased with variance close to the Cramér-Rao lower bound. Further, RSS and time-of-arrival (TOA) channel measurements are used to demonstrate performance as good as the centralized maximum-likelihood estimator (MLE) in a real-world sensor network.

References

  1. Albowicz, J., Chen, A., and Zhang, L. 2001. Recursive position estimation in sensor networks. In IEEE International Conference on Network Protocols. 35--41. Google ScholarGoogle Scholar
  2. Benzécri, J. 1973. L'Analyse des Données, Tome 2, L'Analyse des Correspondences. Dunod, Paris.Google ScholarGoogle Scholar
  3. Caffery Jr., J. and Stuber, G. L. 1998. Subscriber location in cdma cellular networks. IEEE Trans. Veh. Tech. 47, 2 (May), 406--416.Google ScholarGoogle Scholar
  4. Čapkun, S., Hamdi, M., and Hubaux, J.-P. 2001. GPS-free positioning in mobile ad-hoc networks. In 34th IEEE Hawaii International Conference on System Sciences (HICSS-34). Google ScholarGoogle Scholar
  5. Catovic, A. and Sahinoglu, Z. 2004. The Cramer-Rao bounds of hybrid TOA/RSS and TDOA/RSS location estimation schemes. Tech. Rep. TR2003-143, Mitsubishi Electric Research Laboratory. (Jan).Google ScholarGoogle Scholar
  6. Chen, P.-C. 1999. A non-line-of-sight error mitigation algorithm in location estimation. In IEEE Wireless Communication and Networking Conference. 316--320.Google ScholarGoogle Scholar
  7. Cleveland, W. 1979. Robust locally weighted regression and smoothing scatterplots. J. Amer. Stat. Assoc. 74, 368, 829--836.Google ScholarGoogle Scholar
  8. Correal, N. S., Kyperountas, S., Shi, Q., and Welborn, M. 2003. An ultra wideband relative location system. In IEEE Conference on Ultra Wideband Systems and Technologies.Google ScholarGoogle Scholar
  9. Coulson, A. J., Williamson, A. G., and Vaughan, R. G. 1998. A statistical basis for lognormal shadowing effects in multipath fading channels. IEEE Trans. Veh. Tech. 46, 4 (April), 494--502.Google ScholarGoogle Scholar
  10. Cox, D. 1972. Delay doppler characteristics of multipath propagation at 910 MHz in a suburban mobile radio environment. IEEE Trans. Antennas and Propagation AP-20, 5 (Sep), 625--635.Google ScholarGoogle Scholar
  11. Cox, T. and Cox, M. 1994. Multidimensional Scaling. Chapman & Hall, London.Google ScholarGoogle Scholar
  12. Davidson, M. L. 1983. Multidimensional Scaling. Wiley, Ney York.Google ScholarGoogle Scholar
  13. Doherty, L., Pister, K. S. J., and Ghaoui, L. E. 2001. Convex position estimation in wireless sensor networks. In IEEE INFOCOM. Vol. 3. 1655--1663.Google ScholarGoogle Scholar
  14. Fleming, R. and Kushner, C. 1995. Low-power, miniature, distributed position location and communication devices using ultra-wideband, nonsinusoidal communication technology. Tech. rep., Aetherwire Inc., Semi-Annual Technical Report, ARPA Contract J-FBI-94-058. (July).Google ScholarGoogle Scholar
  15. Girod, L., Bychkovskiy, V., Elson, J., and Estrin, D. 2002. Locating tiny sensors in time and space: a case study. In IEEE International Conference on Computer Design. 214--219. Google ScholarGoogle Scholar
  16. Greenacre, M. J. 1984. Theory and Applications of Correspondence Analysis. Academic Press Inc., London.Google ScholarGoogle Scholar
  17. Groenen, P. 1993. The majorization approach to multidimensional scaling: Some problems and extensions. DSWO Press.Google ScholarGoogle Scholar
  18. Gupta, P. and Kumar, P. R. 2000. The capacity of wireless networks. IEEE Trans. Inform. Theory 46, 2, 388--404. Google ScholarGoogle Scholar
  19. Hashemi, H. 1993. The Indoor Radio Propagation Channel. Proc. IEEE 81, 7 (July), 943--968.Google ScholarGoogle Scholar
  20. Ji, X. and Zha, H. 2004. Sensor positioning in wireless ad-hoc sensor networks with multidimensional scaling. In IEEE INFOCOM, 2652--2661.Google ScholarGoogle Scholar
  21. Kim, S., Pals, T., Iltis, R., and Lee, H. 2002. CDMA multipath channel estimation using generalized successive interference cancellation algorithm for radiolocation. In 37th Annual Conference on Information Sciences and Systems.Google ScholarGoogle Scholar
  22. Kruskal, J. 1964a. Multidimensional scaling by optmizing goodness-of-fit to a nonmetric hypothesis. Psychometrika 29, 1--27.Google ScholarGoogle Scholar
  23. Kruskal, J. 1964b. Nonmetric multidimensional scaling: a numerical method. Psychometrika 29, 115--129.Google ScholarGoogle Scholar
  24. Lange, K., Hunter, D. R., and Yang, I. 2000. Optimization transfer using surrogate objective functions. J. Computational Graph. Stat. 9, 1 (March), 1--20.Google ScholarGoogle Scholar
  25. Moses, R. L., Krishnamurthy, D., and Patterson, R. 2002. An auto-calibration method for unattended ground sensors. In Proceedings of IEEE International Conference on Acoustic Speech and Signal Processing. Vol. 3. 2941--2944.Google ScholarGoogle Scholar
  26. Moses, R. L., Krishnamurthy, D., and Patterson, R. 2003. A self-localization method for wireless sensor networks. EURASIP Journal on Applied Sig. Proc. 4 (Mar.), 348--358.Google ScholarGoogle Scholar
  27. Nagpal, R., Shrobe, H., and Bachrach, J. 2003. Organizing a global coordinate system from local information on an ad hoc sensor network. In 2nd International Workshop on Information Processing in Sensor Networks. Google ScholarGoogle Scholar
  28. Niculescu, D. and Nath, B. 2001. Ad hoc positioning system. In IEEE Globecom 2001. Vol. 5. 2926--2931.Google ScholarGoogle Scholar
  29. Niculescu, D. and Nath, B. 2004. Error characteristics of ad hoc positioning systems. In ACM MOBIHOC. Google ScholarGoogle Scholar
  30. Pahlavan, K., Krishnamurthy, P., and Beneat, J. 1998. Wideband radio propagation modeling for indoor geolocation applications. IEEE Comm. Magazine, 60--65. Google ScholarGoogle Scholar
  31. Patwari, N. and Hero III, A. O. 2003. Using proximity and quantized RSS for sensor localization in wireless networks. In IEEE/ACM 2nd Workshop on Wireless Sensor Networks & Applications. Google ScholarGoogle Scholar
  32. Patwari, N. and Hero III, A. O. 2004. Manifold learning algorithms for localization in wireless sensor networks. In Proceedings of IEEE International Conference on Acoustic Speech and Signal Processing.Google ScholarGoogle Scholar
  33. Patwari, N., Hero III, A. O., Perkins, M., Correal, N., and O'Dea, R. J. 2003. Relative location estimation in wireless sensor networks. IEEE Trans. Sig. Proc. 51, 8 (Aug.), 2137--2148. Google ScholarGoogle Scholar
  34. Rabbat, M. and Nowak, R. 2004. Distributed optimization in sensor networks. In 3rd International Symposium on Information Processing in Sensor Networks (IPSN'04). Berkeley, CA. Google ScholarGoogle Scholar
  35. Ramsay, J. 1982. Some statiscal approaches to multidimensional scaling data. J. R. Statist. Soc. A 145, part 3, 285--312.Google ScholarGoogle Scholar
  36. Rappaport, T. S. 1996. Wireless Communications: Principles and Practice. Prentice-Hall Inc., New Jersey. Google ScholarGoogle Scholar
  37. Savarese, C., Rabaey, J. M., and Beutel, J. 2001. Locationing in distributed ad-hoc wireless sensor networks. In Proceedings of IEEE International Conference on Acoustic Speech and Signal Processing. 2037--2040.Google ScholarGoogle Scholar
  38. Savvides, A., Garber, W. L., Moses, R. L., and Srivastava, M. B. 2004. An analysis of error including parameters in multihop sensor node localization. IEEE Trans. Mobile. Comp. 4, 6, 567--577. Google ScholarGoogle Scholar
  39. Savvides, A., Park, H., and Srivastava, M. B. 2002. The bits and flops of the n-hop multilateration primitive for node localization problems. In International Workshop on Sensor Networks & Applications. 112--121. Google ScholarGoogle Scholar
  40. Shang, Y., Ruml, W., Zhang, Y., and Fromherz, M. P. J. 2003. Localization from mere connectivity. In Proceedings of the 4th ACM International Symposium on Mobile Ad Hoc Networking & Computing. 201--212. Google ScholarGoogle Scholar
  41. Takane, Y., Young, F., and de Leeuw, J. 1977. Nonmetric individual differences multidimensional scaling: An alternating least squares method with optimal scaling features. Psychometrika 42, 7--67.Google ScholarGoogle Scholar
  42. Tenenbaum, J. B., de Silva, V., and Langford, J. C. 2000. A global geometric framework for nonlinear dimensionality reduction. Science 290, 2319--2323.Google ScholarGoogle Scholar
  43. Zinnes, J. and MacKay, D. 1983. Probabilistic multidimensional scaling: complete and incomplete data. Psychometrika 48, 27--48.Google ScholarGoogle Scholar

Index Terms

  1. Distributed weighted-multidimensional scaling for node localization in sensor networks

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader