skip to main content
article
Open Access
Seminal Paper

Geometric modeling with conical meshes and developable surfaces

Published:01 July 2006Publication History
Skip Abstract Section

Abstract

In architectural freeform design, the relation between shape and fabrication poses new challenges and requires more sophistication from the underlying geometry. The new concept of conical meshes satisfies central requirements for this application: They are quadrilateral meshes with planar faces, and therefore particularly suitable for the design of freeform glass structures. Moreover, they possess a natural offsetting operation and provide a support structure orthogonal to the mesh. Being a discrete analogue of the network of principal curvature lines, they represent fundamental shape characteristics. We show how to optimize a quad mesh such that its faces become planar, or the mesh becomes even conical. Combining this perturbation with subdivision yields a powerful new modeling tool for all types of quad meshes with planar faces, making subdivision attractive for architecture design and providing an elegant way of modeling developable surfaces.

Skip Supplemental Material Section

Supplemental Material

p681-liu-high.mov

mov

48 MB

p681-liu-low.mov

mov

16.2 MB

References

  1. Alliez, P., Cohen-Steiner, D., Devillers, O., Levy, B., and Desbrun, M. 2003. Anisotropic polygonal remeshing. ACM Trans. Graphics 22, 3, 485--493.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Aumann, G. 2004. Degree elevation and developable Bézier surfaces. Comp. Aided Geom. Design 21, 661--670.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Blake, A., and Isard, M. 1998. Active Contours. Springer.]]Google ScholarGoogle Scholar
  4. Bobenko, A., and Suris, Y., 2005. Discrete differential geometry. Consistency as integrability. preprint, http://arxiv.org/abs/math.DG/0504358.]]Google ScholarGoogle Scholar
  5. Bobenko, A., Matthes, D., and Suris, Y. 2003. Discrete and smooth orthogonal systems: C∞-approximation. Int. Math. Res. Not., 45, 2415--2459.]]Google ScholarGoogle ScholarCross RefCross Ref
  6. Bobenko, A., Hoffmann, T., and Springborn, B. A. 2006. Minimal surfaces from circle patterns: Geometry from combinatorics. Annals of Mathematics 164, 231--264.]]Google ScholarGoogle ScholarCross RefCross Ref
  7. Cecil, T. 1992. Lie Sphere Geometry. Springer.]]Google ScholarGoogle Scholar
  8. Cerda, E., Chaieb, S., Melo, F., and Mahadevan, L. 1999. Conical dislocations in crumpling. Nature 401, 46--49.]]Google ScholarGoogle ScholarCross RefCross Ref
  9. Chen, Y., and Medioni, G. 1991. Object modeling by registration of multiple range images. In Proc. IEEE Conf. on Robotics and Automation.]]Google ScholarGoogle Scholar
  10. Chu, C. H., and Sequin, C. 2002. Developable Bézier patches: properties and design. Computer-Aided Design 34, 511--528.]]Google ScholarGoogle ScholarCross RefCross Ref
  11. Cipolla, R., and Giblin, P. 2000. Visual Motion of Curves and Surfaces. Cambridge University Press.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Clarenz, U., Rumpf, M., and Telea, A. 2004. Robust feature detection and local classification for surfaces based on moment analysis. IEEE Trans. Visual. Comp. Graphics 10, 516--524.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Cohen-Steiner, D., and Morvan, J.-M. 2003. Restricted Delaunay triangulations and normal cycle. In Proc. 19th annual symposium on Computational geometry, ACM, 312--321.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Cohen-Steiner, D., Alliez, P., and Desbrun, M. Variational shape approximation. ACM Trans. Graphics 23, 3, 905--914.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Desbrun, M., Grinspun, E., and Schröder, P. 2005. Discrete Differential Geometry. SIGGRAPH Course Notes.]]Google ScholarGoogle Scholar
  16. do Carmo, M. 1976. Differential Geometry of Curves and Surfaces. Prentice-Hall.]]Google ScholarGoogle Scholar
  17. Dong, S., Kircher, S., and Garland, M. 2005. Harmonic functions for quadrilateral remeshing of arbitrary manifolds. Comp. Aided Geom. Design 22, 392--423.]]Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Frey, W. 2004. Modeling buckled developable surfaces by triangulation. Computer-Aided Design 36, 4, 299--313.]]Google ScholarGoogle ScholarCross RefCross Ref
  19. Glymph, J., Shelden, D., Ceccato, C., Mussel, J., and Schober, H. 2002. A parametric strategy for freeform glass structures using quadrilateral planar facets. In Acadia 2002, ACM, 303--321.]]Google ScholarGoogle Scholar
  20. Hildebrandt, K., Polthier, K., and Wardetzky, M. 2005. On the convergence of metric and geometric properties of polyhedral surfaces. Tech. Rep. 05--24, Zuse Institute Berlin.]]Google ScholarGoogle Scholar
  21. Julius, D., Kraevoy, V., and Sheffer, A. 2005. D-charts: Quasi-developable mesh segmentation. Computer Graphics Forum (Proc. Eurographics 2005) 24, 3, 581--590.]]Google ScholarGoogle Scholar
  22. Kelley, C. T. 1999. Iterative Methods for Optimization. SIAM.]]Google ScholarGoogle Scholar
  23. Kilian, A. 2006. Design exploration through bidirectional modeling of constraints. PhD thesis, Massachusets Inst. Technology.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Kim, S.-J., and Yang, M.-Y. 2005. Triangular mesh offset for generalized cutter. Computer-Aided Design 37, 10, 999--1014.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Madsen, K., Nielsen, H. B., and Tingleff, O., 2004. Optimization with constraints. Lecture Notes.]]Google ScholarGoogle Scholar
  26. Marinov, M., and Kobbelt, L. 2004. Direct anisotropic quad-dominant remeshing. In Proc. Pacific Graphics, 207--216.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Martin, R. R., de Pont, J., and Sharrock, T. J. 1986. Cyclide surfaces in computer aided design. In The mathematics of surfaces, J. A. Gregory, Ed. Clarendon Press, Oxford, 253--268.]]Google ScholarGoogle Scholar
  28. Mitani, J., and Suzuki, H. 2004. Making papercraft toys from meshes using strip-based approximate unfolding. ACM Trans. Graphics 23, 3, 259--263.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Polthier, K. 2002. Polyhedral surfaces of constant mean curvature. Habilitationsschrift TU Berlin.]]Google ScholarGoogle Scholar
  30. Porteous, I. R. 1994. Geometric Differentiation for the Intelligence of Curves and Surfaces. Cambridge Univ. Press.]]Google ScholarGoogle Scholar
  31. Pottmann, H., and Wallner, J. 2001. Computational Line Geometry. Springer.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Pottmann, H., Huang, Q.-X., Yang, Y.-L., and Kölpl, S., 2005. Integral invariants for robust geometry processing. Geometry Preprint 146, TU Wien.]]Google ScholarGoogle Scholar
  33. Ray, N., Li, W.-C., Levy, B., Sheffer, A., and Alliez, P., 2005. Periodic global parameterization. INRIA preprint.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Sauer, R. 1970. Differenzengeometrie. Springer.]]Google ScholarGoogle Scholar
  35. Sequin, C. 2004. CAD tools for aesthetic engineering. CAD & Appl. 1, 301--309.]]Google ScholarGoogle Scholar
  36. Sullivan, J. 2005. The aesthetic value of optimal geometry. In In The Visual Mind II, M. Emmer, Ed. MIT Press, 547--563.]]Google ScholarGoogle Scholar
  37. Wang, C., and Tang, K. 2004. Achieving developability of a polygonal surface by minimum deformation: a study of global and local optimization approaches. Vis. Computer 20, 521--539.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Wang, W., Wallner, J., and Liu, Y., 2006. An angle criterion for conical mesh vertices. Geometry Preprint 157, TU Wien. http://www.geometrie.tuwien.ac.at/ig/papers/tr157.pdf.]]Google ScholarGoogle Scholar
  39. Wunderlich, W. 1951. Zur Differenzengeometrie der Flächen konstanter negativer Krümmung. Sitz. öst. Ak. Wiss. 160, 41--77.]]Google ScholarGoogle Scholar
  40. Yamauchi, H., Gumhold, S., Zayer, R., and Seidel, H.-P. 2005. Mesh segmentation driven by Gaussian curvature. Visual Computer 21, 659--668.]]Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Geometric modeling with conical meshes and developable surfaces

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Transactions on Graphics
          ACM Transactions on Graphics  Volume 25, Issue 3
          July 2006
          742 pages
          ISSN:0730-0301
          EISSN:1557-7368
          DOI:10.1145/1141911
          Issue’s Table of Contents
          • cover image ACM Overlay Books
            Seminal Graphics Papers: Pushing the Boundaries, Volume 2
            August 2023
            893 pages
            ISBN:9798400708978
            DOI:10.1145/3596711
            • Editor:
            • Mary C. Whitton

          Copyright © 2006 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 1 July 2006
          Published in tog Volume 25, Issue 3

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • article

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader