skip to main content
10.1145/1145768.1145792acmconferencesArticle/Chapter ViewAbstractPublication PagesissacConference Proceedingsconference-collections
Article

Symbolic-numeric sparse interpolation of multivariate polynomials

Published:09 July 2006Publication History

ABSTRACT

We consider the problem of sparse interpolation of an approximate multivariate black-box polynomial in floating-point arithmetic. That is, both the inputs and outputs of the black-box polynomial have some error, and all numbers are represented in standard, fixed-precision, floating point arithmetic. By interpolating the black box evaluated at random primitive roots of unity, we give efficient and numerically robust solutions. We note the similarity between the exact Ben-Or/Tiwari sparse interpolation algorithm and the classical Prony's method for interpolating a sum of exponential functions, and exploit the generalized eigenvalue reformulation of Prony's method. We analyze the numerical stability of our algorithms and the sensitivity of the solutions, as well as the expected conditioning achieved through randomization. Finally, we demonstrate the effectiveness of our techniques in practice through numerical experiments and applications.

References

  1. B. Beckermann. The condition number of real Vandermonde, Krylov and positive definite Hankel matrices. Numeriche Mathematik, 85:553--577, 2000.]]Google ScholarGoogle ScholarCross RefCross Ref
  2. B. Beckermann, G. Golub, and G. Labahn. On the numerical condition of a generalized Hankel eigenvalue problem. submitted to Numerische Matematik, 2005.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. M. Ben-Or and P. Tiwari. A deterministic algorithm for sparse multivariate polynomial interpolation. In Proc. Twentieth Annual ACM Symp. Theory Comput., pages 301--309, New York, N.Y., 1988. ACM Press.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. A. Córdova, W. Gautschi, and S. Ruscheweyh. Vandermonde matrices on the circle: spectral properties and conditioning. Numerische Mathematik, 57:577--591, 1990.]]Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. R.M. Corless, M. Giesbrecht, I. Kotsireas, and S.M. Watt. Numerical implicitization of parametric hypersurfaces with linear algebra. In E. Roanes-Lozano, editor, Artificial Intelligence and Symbolic Computation: International Conference AISC 2000, pages 174--183, Heidelberg, Germany, 2001. Springer Verlag.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. A. Díaz and E. Kaltofen. FoxBox a system for manipulating symbolic objects in black box representation. In O. Gloor, editor, Proc. 1998 Internat. Symp. Symbolic Algebraic Comput. (ISSAC'98), pages 30--37, New York, N. Y., 1998. ACM Press.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. S. Gao, E. Kaltofen, J. May, Z. Yang, and L. Zhi. Approximate factorization of multivariate polynomials via differential equations. In ISSAC 2004 Proc. 2004 Internat. Symp. Symbolic Algebraic Comput., pages 167--174, 2004.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. M. Gasca and T. Sauer. On the history of multivariate polynomial interpolation. J. Computational and Applied Mathematics, 122:23--35, 2000.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. W. Gautschi. Norm estimates for inverses of Vandermonde matrices. Numerische Mathematik, 23:337--347, 1975.]]Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. W. Gautschi and G. Inglese. Lower bounds for the condition numbers of Vandermonde matrices. Numerische Mathematik, 52:241--250, 1988.]]Google ScholarGoogle ScholarCross RefCross Ref
  11. K. O. Geddes, S. R. Czapor, and G. Labahn. Algorithms for Computer Algebra. Kluwer Academic Publ., Boston, Massachusetts, USA, 1992.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. G. H. Golub, P. Milanfar, and J. Varah. A stable numerical method for inverting shape from moments. SIAM J. Sci. Comput., 21(4):1222--1243, 1999.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. G. H. Golub and C. F. Van Loan. Matrix Computations. Johns Hopkins University Press, Baltimore, Maryland, third edition, 1996.]]Google ScholarGoogle Scholar
  14. D. Yu. Grigoriev, M. Karpinski, and M. F. Singer. Fast parallel algorithms for sparse multivariate polynomial interpolation over finite fields. SIAM J. Comput., 19(6):1059--1063, 1990.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. E. Kaltofen and Lakshman Yagati. Improved sparse multivariate polynomial interpolation algorithms. In P. Gianni, editor, Symbolic Algebraic Comput. Internat. Symp. ISSAC '88 Proc., volume 358 of Lect. Notes Comput. Sci., pages 467--474, Heidelberg, Germany, 1988. Springer Verlag.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. E. Kaltofen and B. Trager. Computing with polynomials given by black boxes for their evaluations: Greatest common divisors, factorization, separation of numerators and denominators. J. Symbolic Comput., 9(3):301--320, 1990.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. L. Kronecker. Über einige Interpolationsformeln für ganze Funktionen mehrerer Variabeln, Lecture at the academy of sciences, December 21, 1865, volume H. Hensel (Ed.), L. Kroneckers Werke, Vol. I. Teubner, Stuttgart, 1895. reprinted by Chelsea, New York, 1968.]]Google ScholarGoogle Scholar
  18. R. Lorentz. Multivariate Hermite interpolation by algebaic polynomials: a survey. J. Computational and Applied Mathematics, 122:167--201, 2000.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Y. Mansour. Randomized approximation and interpolation of sparse polynomials. SIAM Journal on Computing, 24(2):357--368, 1995.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. P. Milanfar, G. C. Verghese, W. C. Karl, and A. S. Wilsky. Reconstructing polygons from moments with connections to array processing. IEEE Trans. Signal Processing, 43(2):432--443, 1995.]]Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Baron de Prony, Gaspard-Clair-François-Marie Riche. Essai expérimental et analytique sur les lois de la Dilatabilité des fluides élastique et sur celles de la Force expansive de la vapeur de l'eau et de la vapeur de l'alkool, à différentes températures. J. de l'École Polytechnique, 1:24--76, 1795.]]Google ScholarGoogle Scholar
  22. A. Sommese, J. Verschelde, and C. Wampler. Numerical factorization of multivariate complex polynomials. Theoretical Computer Science, 315(2-3):651--669, 2004.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. J. H. Wilkinson. Rounding errors in algebraic processes. Prentice-Hall, Englewood Cliffs, N.J., 1963.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Z. Zilic and K. Radecka. On feasible multivariate polynomial interpolations over arbitrary fields. In S. Dooley, editor, ISSAC 99 Proc. 1999 Internat. Symp. Symbolic Algebraic Comput., pages 67--74, New York, N. Y., 1999. ACM Press.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. R. Zippel. Probabilistic algorithms for sparse polynomials. In Proc. EUROSAM '79, volume 72 of Lect. Notes Comput. Sci., pages 216--226, Heidelberg, Germany, 1979. Springer Verlag.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. R. Zippel. Interpolating polynomials from their values. J. Symbolic Comput., 9(3):375--403, 1990.]] Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Symbolic-numeric sparse interpolation of multivariate polynomials

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      ISSAC '06: Proceedings of the 2006 international symposium on Symbolic and algebraic computation
      July 2006
      374 pages
      ISBN:1595932763
      DOI:10.1145/1145768
      • General Chair:
      • Barry Trager

      Copyright © 2006 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 9 July 2006

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • Article

      Acceptance Rates

      Overall Acceptance Rate395of838submissions,47%

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader