skip to main content
article

SplitStream: high-bandwidth multicast in cooperative environments

Published:19 October 2003Publication History
Skip Abstract Section

Abstract

In tree-based multicast systems, a relatively small number of interior nodes carry the load of forwarding multicast messages. This works well when the interior nodes are highly-available, dedicated infrastructure routers but it poses a problem for application-level multicast in peer-to-peer systems. SplitStream addresses this problem by striping the content across a forest of interior-node-disjoint multicast trees that distributes the forwarding load among all participating peers. For example, it is possible to construct efficient SplitStream forests in which each peer contributes only as much forwarding bandwidth as it receives. Furthermore, with appropriate content encodings, SplitStream is highly robust to failures because a node failure causes the loss of a single stripe on average. We present the design and implementation of SplitStream and show experimental results obtained on an Internet testbed and via large-scale network simulation. The results show that SplitStream distributes the forwarding load among all peers and can accommodate peers with different bandwidth capacities while imposing low overhead for forest construction and maintenance.

References

  1. Planetlab. http://www.planet-lab.org.]]Google ScholarGoogle Scholar
  2. E. Adar and B. Huberman. Free riding on Gnutella. First Monday, 5(10), Oct. 2000. http://firstmonday.org/issues/issue5_10/adar/index.html.]]Google ScholarGoogle Scholar
  3. D. Andersen, H. Balakrishnan, F. Kaashoek, and R. Morris. Resilient overlay networks. In SOSP'01, Banff, Canada, Dec. 2001.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. J. G. Apostolopoulos. Reliable video communication over lossy packet networks using multiple state encoding and path diversity. In Visual Communications and Image Processing, Jan. 2001.]]Google ScholarGoogle Scholar
  5. J. G. Apostolopoulos and S. J. Wee. Unbalanced multiple description video communication using path diversity. In IEEE International Conference on Image Processing, Oct. 2001.]]Google ScholarGoogle ScholarCross RefCross Ref
  6. S. Banerjee, B. Bhattacharjee, and C. Kommareddy. Scalable application layer multicast. In Proceedings of ACM SIGCOMM, Aug. 2002.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. M. Bawa, H. Deshpande, and H. Garcia-Molina. Transience of peers and streaming media. In HotNets-I, New Jersey, USA, Oct. 2002.]]Google ScholarGoogle Scholar
  8. K. Birman, M. Hayden, O. Ozkasap, Z. Xiao, M. Budiu, and Y. Minsky. Bimodal multicast. ACM Transactions on Computer Systems, 17(2):41--88, May 1999.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. R. Blahut. Theory and Practice of Error Control Codes. Addison Wesley, MA, 1994.]]Google ScholarGoogle Scholar
  10. J. Byers, J. Considine, M. Mitzenmacher, and S. Rost. Informed content delivery across adaptive overlay networks. In SIGCOMM'2002, Pittsburgh, PA, USA, Aug. 2002.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. M. Castro, P. Druschel, Y. C. Hu, and A. Rowstron. Exploiting network proximity in peer-to-peer overlay networks. Technical Report MSR-TR-2002-82, Microsoft Research, 2002.]]Google ScholarGoogle Scholar
  12. M. Castro, P. Druschel, Y. C. Hu, and A. Rowstron. Proximity neighbor selection in tree-based structured peer-to-peer overlays. Technical Report MSR-TR-2003-52, Microsoft Research, Aug. 2003.]]Google ScholarGoogle Scholar
  13. M. Castro, P. Druschel, A.-M. Kermarrec, and A. Rowstron. SCRIBE: A large-scale and decentralized application-level multicast infrastructure. IEEE JSAC, 20(8), Oct. 2002.]]Google ScholarGoogle Scholar
  14. M. Castro, P. Druschel, A.-M. Kermarrec, and A. Rowstron. Scalable application-level anycast for highly dynamic groups. In Networked Group Communications, Oct. 2003.]]Google ScholarGoogle ScholarCross RefCross Ref
  15. M. Castro, M. Jones, A.-M. Kermarrec, A. Rowstron, M. Theimer, H. Wang, and A. Wolman. An evaluation of scalable application-level multicast built using peer-to-peer overlay networks. In INFOCOM'03, 2003.]]Google ScholarGoogle ScholarCross RefCross Ref
  16. Y. Chu, S. Rao, and H. Zhang. A case for end system multicast. In Proc. of ACM Sigmetrics, pages 1--12, June 2000.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Y. K. Dalal and R. Metcalfe. Reverse path forwarding of broadcast packets. Communications of the ACM, 21(12):1040--1048, 1978.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. S. Deering and D. Cheriton. Multicast routing in datagram internetworks and extended LANs. ACM Transactions on Computer Systems, 8(2), May 1990.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. P. Eugster, S. Handurukande, R. Guerraoui, A.-M. Kermarrec, and P. Kouznetsov. Lightweight probabilistic broadcast. In Proceedings of The International Conference on Dependable Systems and Networks (DSN 2001), July 2001.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. J. Gemmell, E. Schooler, and J. Gray. Fcast multicast file distribution. IEEE Network, 14(1):58--68, Jan 2000.]]Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. R. Govindan and H. Tangmunarunkit. Heuristics for internet map discovery. In Proc. 19th IEEE INFOCOM, pages 1371--1380, Tel Aviv, Israel, March 2000. IEEE.]]Google ScholarGoogle ScholarCross RefCross Ref
  22. J. Jannotti, D. Gifford, K. Johnson, M. Kaashoek, and J. O'Toole. Overcast: Reliable multicasting with an overlay network. In Proc. OSDI 2000, San Diego, CA, 2000.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. D. Kostic, A. Rodriguez, J. Albrecht, A. Bhirud, and A. Vahdat. Using random subsets to build scalable network services. In USITS'03, Mar. 2003.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. M. Luby. LT Codes. In FOCS 2002, Nov. 2002.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. R. Mahajan, M. Castro, and A. Rowstron. Controlling the cost of reliability in peer-to-peer overlays. In IPTPS'03, Feb. 2003.]]Google ScholarGoogle ScholarCross RefCross Ref
  26. P. Maymounkov and D. Mazieres. Rateless Codes and Big Downloads. In IPTPS'03, Feb. 2003.]]Google ScholarGoogle Scholar
  27. A. Mohr, E. Riskin, and R. Ladner. Unequal loss protection: Graceful degredation of image quality over packet erasure channels through forward error correction. IEEE JSAC, 18(6):819--828, June 2000.]]Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. T. Ngan, P. Druschel, and D. S. Wallach. Enforcing fair sharing of peer-to-peer resources. In IPTPS '03, Berkeley, CA, Feb. 2003.]]Google ScholarGoogle ScholarCross RefCross Ref
  29. T. Nguyen and A. Zakhor. Distributed video streaming with forward error correction. In Packet Video Workshop, Pittsburgh, USA., 2002.]]Google ScholarGoogle Scholar
  30. V. Padmanabhan, H. Wang, P. Chou, and K. Sripanidkulchai. Distributing streaming media content using cooperative networking. In The 12th International Workshop on Network and Operating Systems Support for Digital Audio and Video (NOSSDAV '02), Miami Beach, FL, USA, May 2002.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A scalable content-addressable network. In Proc. ACM SIGCOMM'01, San Diego, CA, Aug. 2001.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. S. Ratnasamy, M. Handley, R. Karp, and S. Shenker. Application-level multicast using content-addressable networks. In NGC'2001, Nov. 2001.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. A. Rowstron and P. Druschel. Pastry: Scalable, distributed object location and routing for large-scale peer-to-peer systems. In Proc. IFIP/ACM Middleware 2001, Heidelberg, Germany, Nov. 2001.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. S. Saroiu, P. K. Gummadi, and S. D. Gribble. A measurement study of peer-to-peer file sharing systems. In Proceedings of the Multimedia Computing and Networking (MMCN), San Jose, CA, Jan. 2002.]]Google ScholarGoogle Scholar
  35. A. Snoeren, K. Conley, and D. Gifford. Mesh-based content routing using XML. In SOSP'01, Banff, Canada, Dec. 2001.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan. Chord: A scalable peer-to-peer lookup service for Internet applications. In Proc. ACM SIGCOMM'01, San Diego, CA, Aug. 2001.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. H. Tangmunarunkit, R. Govindan, D. Estrin, and S. Shenker. The impact of routing policy on internet paths. In Proc. 20th IEEE INFOCOM, Alaska, USA, Apr. 2001.]]Google ScholarGoogle ScholarCross RefCross Ref
  38. E. Zegura, K. Calvert, and S. Bhattacharjee. How to model an internetwork. In INFOCOM'96, San Francisco, CA, 1996.]]Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. B. Zhao, J. Kubiatowicz, and A. Joseph. Tapestry: An infrastructure for fault-resilient wide-area location and routing. Technical Report UCB//CSD-01-1141, U. C. Berkeley, April 2001.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. S. Zhuang, B. Zhao, A. Joseph, R. Katz, and J. Kubiatowicz. Bayeux: An architecture for scalable and fault-tolerant wide-area data dissemination. In NOSSDAV'2001, June 2001.]] Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. SplitStream: high-bandwidth multicast in cooperative environments

              Recommendations

              Comments

              Login options

              Check if you have access through your login credentials or your institution to get full access on this article.

              Sign in

              Full Access

              • Published in

                cover image ACM SIGOPS Operating Systems Review
                ACM SIGOPS Operating Systems Review  Volume 37, Issue 5
                SOSP '03
                December 2003
                329 pages
                ISSN:0163-5980
                DOI:10.1145/1165389
                Issue’s Table of Contents
                • cover image ACM Conferences
                  SOSP '03: Proceedings of the nineteenth ACM symposium on Operating systems principles
                  October 2003
                  338 pages
                  ISBN:1581137575
                  DOI:10.1145/945445

                Copyright © 2003 ACM

                Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

                Publisher

                Association for Computing Machinery

                New York, NY, United States

                Publication History

                • Published: 19 October 2003

                Check for updates

                Qualifiers

                • article

              PDF Format

              View or Download as a PDF file.

              PDF

              eReader

              View online with eReader.

              eReader