skip to main content
article

The arithmetical complexity of dimension and randomness

Published:01 April 2007Publication History
Skip Abstract Section

Abstract

Constructive dimension and constructive strong dimension are effectivizations of the Hausdorff and packing dimensions, respectively. Each infinite binary sequence A is assigned a dimension dim(A) ∈ [0,1] and a strong dimension Dim(A) ∈ [0,1].

Let DIMα and DIMαstr be the classes of all sequences of dimension α and of strong dimension α, respectively. We show that DIM0 is properly Π02, and that for all Δ02-computable α ∈ (0, 1], DIMα is properly Π03.

To classify the strong dimension classes, we use a more powerful effective Borel hierarchy where a coenumerable predicate is used rather than an enumerable predicate in the definition of the Σ01 level. For all Δ02-computable α ∈ [0, 1), we show that DIMαstr is properly in the Π03 level of this hierarchy. We show that DIM1str is properly in the Π02 level of this hierarchy.

We also prove that the class of Schnorr random sequences and the class of computably random sequences are properly Π03.

References

  1. Ambos-Spies, K., Merkle, W., Reimann, J., and Stephan, F. 2001. Hausdorff dimension in exponential time. In Proceedings of the 16th IEEE Conference on Computational Complexity. 210--217. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Athreya, K. B., Hitchcock, J. M., Lutz, J. H., and Mayordomo, E. 2004. Effective strong dimension in algorithmic information and computational complexity. In Proceedings of the 21st Annual Symposium on Theoretical Aspects of Computer Science. Springer Verlag. 632--643. To appear in SIAM J. Comput.Google ScholarGoogle Scholar
  3. Dai, J. J., Lathrop, J. I., Lutz, J. H., and Mayordomo, E. 2004. Finite-State dimension. Theor. Comput. Sci. 310, 1 3, 1--33. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Fenner, S. A. 2002. Gales and supergales are equivalent for defining constructive Hausdorff dimension. Tech. Rep. cs.CC/0208044, Computing Research Repository.Google ScholarGoogle Scholar
  5. Fortnow, L. and Lutz, J. H. 2005. Prediction and dimension. J. Comput. Syst. Sci. 70, 4, 570--589. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Hausdorff, F. 1919. Dimension und äußeres Maß. Mathematische Annalen 79, 157--179.Google ScholarGoogle ScholarCross RefCross Ref
  7. Hitchcock, J. M. 2002. MAX3SAT is exponentially hard to approximate if NP has positive dimension. Theor. Comput. Sci. 289, 1, 861--869. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Hitchcock, J. M. 2003a. Fractal dimension and logarithmic loss unpredictability. Theor. Comput. Sci. 304, 1 3, 431--441. Google ScholarGoogle ScholarCross RefCross Ref
  9. Hitchcock, J. M. 2003b. Gales suffice for constructive dimension. Inf. Process. Lett. 86, 1, 9--12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Jockusch, C. G. 1980. Degrees of generic sets. In Recursion Theory: Its Generalizations and Applications. London Mathematical Society Lecture Notes Series, vol. 45. Cambridge University Press, New York. 110--139.Google ScholarGoogle Scholar
  11. Kechris, A. S. 1994. Classical Descriptive Set Theory. Springer Verlag.Google ScholarGoogle Scholar
  12. Ki, H. and Linton, T. 1994. Normal numbers and subsets of N with given densities. Fundamenta Mathematicae 144, 163--179.Google ScholarGoogle Scholar
  13. Kreisel, G. 1950. Note on arithmetical models for consistent formulae of the predicate calculus. Fundam. Mathematicae 37, 265--285.Google ScholarGoogle ScholarCross RefCross Ref
  14. Li, M. and Vitányi, P. M. B. 1997. An Introduction to Kolmogorov Complexity and its Applications, 2nd ed Springer Verlag, Berlin. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Lutz, J. H. 2003a. Dimension in complexity classes. SIAM J. Comput. 32, 5, 1236--1259. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Lutz, J. H. 2003b. The dimensions of individual strings and sequences. Inf. Comput. 187, 1, 49--79. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Martin-Löf, P. 1966. The definition of random sequences. Inf. Control 9, 602--619.Google ScholarGoogle ScholarCross RefCross Ref
  18. Mayordomo, E. 2002. A Kolmogorov complexity characterization of constructive Hausdorff dimension. Inf. Process. Lett. 84, 1, 1--3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Moschovakis, Y. N. 1980. Descriptive Set Theory. North-Holland, Amsterdam.Google ScholarGoogle Scholar
  20. Odifreddi, P. 1989. Classical recursion theory. In Studies in Logic and the Foundations of Mathematics, vol. 125. North-Holland.Google ScholarGoogle Scholar
  21. Rogers, Jr, H. 1967. Theory of Recursive Functions and Effective Computability. McGraw - Hill, New York. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Schnorr, C. P. 1971. Zufälligkeit und wahrscheinlichkeit. Lecture Not. Math. 218.Google ScholarGoogle Scholar
  23. Schnorr, C. P. 1977. A survey of the theory of random sequences. In Basic Problems in Methodology and Linguistics, R. E. Butts and J. Hintikka, Eds. D. Reidel. 193--211.Google ScholarGoogle Scholar
  24. Staiger, L. 1993. Recursive automata on infinite words. In Proceedings of the 10th Annual Symposium on Theoretical Aspects of Computer Science. Springer Verlag. 629--639. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Staiger, L. 2000. On the power of reading the whole infinite input tape. In Finite Versus Infinite: Contributions to an Eternal Dilemma, C. S. Calude and G. Paun, Eds. Springer Verlag. 335--348.Google ScholarGoogle Scholar
  26. Staiger, L. 2005. Constructive dimension equals Kolmogorov complexity. Inf. Process. Lett. 93, 3, 149--153. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Terwijn, S. A. 2004. Complexity and randomness. Rendiconti del Seminario Matematico di Torino 62, 1, 1--38.Google ScholarGoogle Scholar
  28. van Lambalgen, M. 1987. Random sequences. Ph.D. thesis, Department of Mathematics, University of Amsterdam.Google ScholarGoogle Scholar
  29. Ville, J. 1939. Étude Critique de la Notion de Collectif. Gauthier Villars, Paris.Google ScholarGoogle Scholar
  30. Wadge, W. W. 1972. Degrees of complexity of subsets of the Baire space. Not. Amer. Math. Soc. 19, 714--715.Google ScholarGoogle Scholar
  31. Wadge, W. W. 1983. Reducibility and determinateness on the Baire space. Ph.D. thesis, U. C. Berkeley.Google ScholarGoogle Scholar
  32. Wang, Y. 1996. Randomness and complexity. Ph.D. thesis, Department of Mathematics, University of Heidelberg.Google ScholarGoogle Scholar

Index Terms

  1. The arithmetical complexity of dimension and randomness

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader