skip to main content
10.1145/1233501.1233535acmconferencesArticle/Chapter ViewAbstractPublication PagesiccadConference Proceedingsconference-collections
Article

A revisit to floorplan optimization by Lagrangian relaxation

Published:05 November 2006Publication History

ABSTRACT

With the advent of deep sub-micron (DSM) era, floorplanning has become increasingly important in physical design process. In this paper we clarify a misunderstanding in using Lagrangian relaxation for the minimum area floorplanning problem. We show that the problem is not convex and its optimal solution cannot be obtained by solving its Lagrangian dual problem. We then propose a modified convex formulation and solve it using min-cost flow technique and trust region method. Experimental results under module aspect ratio bound [0.5, 2.0] show that the running time of our floorplanner scales well with the problem size in MCNC benchmark. Compared with the floorplanner in [27], our flooplanner is 9.5X faster for the largest case "ami49". It also generates a floorplan with smaller deadspace for almost all test cases. In addition, since the generated floorplan has an aspect ratio closer to 1, it is more friendly to packaging. Our floorplanner is also amicable to including interconnect cost and other physical design metrics.

References

  1. R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows: Theory, Algorithms, and Application. Prentice Hall, 1993. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. M. S. Bazaraa, H. D. Sherali, and C. M. Shetty. Nonlinear programming: theory and algorithms. John Wiley & Sons, Inc., second edition, 1997.Google ScholarGoogle Scholar
  3. S. Boyd and L. Vandenberghe. Convex optimization. Cambridge University Press, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Y.-C. Chang, Y.-W. Chang, G.-M. Wu, and S.-W. Wu. B*-trees: A new representation for non-slicing floorplans. In DAC, pages 458--463, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. C.-P. Chen, C. C. N. Chu, and D. F. Wong. Fast and exact simultaneous gate and wire sizing by lagrangian relaxation. IEEE TCAD, 18(7):1014--1025, July 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. T.-C. Chen and Y.-W. Chang. Modern floorplanning based on fast simulated annealing. In ISPD, pages 104--112, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. A. V. Goldberg. An efficient implementation of a scaling minimum-cost flow algorithm. Journal of Algorithms, 22:1--29, 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. G. H. Golub and C. F. van Loan. Matrix Computations. Johns Hopkins, 3rd edition, 1996.Google ScholarGoogle Scholar
  9. P.-N. Guo, C.-K. Cheng, and T. Yoshimura. An O-tree representation of non-slicing floorplan and its applications. In DAC, pages 268--273, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. X. Hong, G. Huang, Y. Cai, J. Gu, S. Dong, C.-K. Cheng, and J. Gu. Corner block list: An effective and efficient topological representation of non-slicing floorplan. In ICCAD, pages 8--12, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. M. Kang and W. W. M. Dai. General floorplanning with l-shaped, t-shaped and soft blocks based on bounded slicing grid structure. In ASP-DAC, pages 265--270, 1997.Google ScholarGoogle ScholarCross RefCross Ref
  12. J.-M. Lin and Y.-W. Chang. TCG: A transitive closure graph-based representation for non-slicing floorplans. In DAC, pages 764--769, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. D. G. Luenberger. Linear and nonlinear programming. Addison-Wesley, Reading, Massachusetts, 1984.Google ScholarGoogle Scholar
  14. T.-S. Moh, T.-S. Chang, and S. L. Hakimi. Globally optimal floorplanning for a layout problem. IEEE Transaction on Circuit and Systems - I: Fundamental Theory and Applications, 43(9):713--720, 1996.Google ScholarGoogle ScholarCross RefCross Ref
  15. H. Murata, K. Fujiyoshi, S. Nakatake, and Y. Kajitani. Rectangle-packing based module placement. In ICCAD, pages 472--479, 1995. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. H. Murata and E. S. Kuh. Sequence-pair based placement method for hard/soft/pre-placed modules. In ISPD, pages 167--172, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. S. Nakatake, K. Fujiyoshi, H. Murata, and Y. Kajitani. Module placement on BSG-structure and IC layout applications. In ICCAD, pages 484--493, 1996. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. J. Nocedal and S. J. Wright. Numerical optimization. Springer Series in Operations Research, Springer Verlag, 1999.Google ScholarGoogle Scholar
  19. R. H. J. M. Otten. Automatic floorplan design. In DAC, pages 261--267, 1982. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. P. Pan and C. L. Liu. Area minimization for floorplans. IEEE TCAD, 14(1):123--132, January 1995. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. K. Sakanushi and Y. Kajitani. The quarter-state sequence (qsequence) to represent the floorplan and applications to layout optimization. In IEEE APCCAS, pages 829--832, 2000.Google ScholarGoogle ScholarCross RefCross Ref
  22. L. Stockmeyer. Optimal orientations of cells in slicing floorplan designs. Information and Control, 59:91--101, 1983. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. T.-C. Wang and D. F Wong. An optimal algorithm for floorplan area optimization. In DAC, pages 180--186, 1990. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. T.-C. Wang and D. F. Wong. Optimal floorplan area optimization. IEEE TCAD, 2(8):992--1001, 1992.Google ScholarGoogle Scholar
  25. D. F. Wong and C. L. Liu. A new algorithm for floorplan design. In DAC, pages 101--107, 1986. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. B. Yao, H. Chen, C. K. Cheng, and R. Graham. Revisiting floorplan representation. In ISPD, pages 138--143, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. F. Y. Young, C. C. N. Chu, W. S. Luk, and Y. C. Wong. Handling soft modules in general non-slicing floorplan using lagrangian relaxation. IEEE TCAD, 20(5):687--692, May 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. F. Y. Young, C. C. N. Chu, and Z. C. Shen. Twin binary sequences: A non-redundant representation for general non-slicing floorplan. IEEE TCAD, 22(4):457--469, April 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. H. Zhou and J. Wang. Acg-adjacent constraint graph for general floorplans. In ICCD, pages 572--575, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. A revisit to floorplan optimization by Lagrangian relaxation

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        ICCAD '06: Proceedings of the 2006 IEEE/ACM international conference on Computer-aided design
        November 2006
        147 pages
        ISBN:1595933891
        DOI:10.1145/1233501

        Copyright © 2006 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 5 November 2006

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • Article

        Acceptance Rates

        Overall Acceptance Rate457of1,762submissions,26%

        Upcoming Conference

        ICCAD '24
        IEEE/ACM International Conference on Computer-Aided Design
        October 27 - 31, 2024
        New York , NY , USA

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader