skip to main content
article

Gossip-based peer sampling

Published:01 August 2007Publication History
Skip Abstract Section

Abstract

Gossip-based communication protocols are appealing in large-scale distributed applications such as information dissemination, aggregation, and overlay topology management. This paper factors out a fundamental mechanism at the heart of all these protocols: the peer-sampling service. In short, this service provides every node with peers to gossip with. We promote this service to the level of a first-class abstraction of a large-scale distributed system, similar to a name service being a first-class abstraction of a local-area system. We present a generic framework to implement a peer-sampling service in a decentralized manner by constructing and maintaining dynamic unstructured overlays through gossiping membership information itself. Our framework generalizes existing approaches and makes it easy to discover new ones. We use this framework to empirically explore and compare several implementations of the peer-sampling service. Through extensive simulation experiments we show that---although all protocols provide a good quality uniform random stream of peers to each node locally---traditional theoretical assumptions about the randomness of the unstructured overlays as a whole do not hold in any of the instances. We also show that different design decisions result in severe differences from the point of view of two crucial aspects: load balancing and fault tolerance. Our simulations are validated by means of a wide-area implementation.

References

  1. Albert, R., Jeong, H., and Barabási, A.-L. 2000. Error and attack tolerance of complex networks. Nature 406, 378--382.Google ScholarGoogle ScholarCross RefCross Ref
  2. Allavena, A., Demers, A., and Hopcroft, J. E. 2005. Correctness of a gossip based membership protocol. In Proceedings of the 24th annual ACM symposium on principles of distributed computing (PODC'05). ACM Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Barabási, A.-L. 2002. Linked: The New Science of Networks. Perseus, Cambridge, MA.Google ScholarGoogle Scholar
  4. Bhagwan, R., Savage, S., and Voelker, G. 2003. Understanding Availability. In 2nd International Workshop on Peer-to-Peer Systems. Lecture Notes in Computer Science. Springer-Verlag, Berlin, Germany.Google ScholarGoogle Scholar
  5. Birman, K. P., Hayden, M., Ozkasap, O., Xiao, Z., Budiu, M., and Minsky, Y. 1999. Bimodal multicast. ACM Trans. Comput. Syst. 17, 2 (May), 41--88. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Dabek, F., Zhao, B., Druschel, P., Kubiatowicz, J., and Stoica, I. 2003. Towards a common API for structured peer-to-peer overlays. In Proceedings of the 2nd International Workshop on Peer-to-Peer Systems (IPTPS'03). Berkeley, CA.Google ScholarGoogle Scholar
  7. DAS2. The distributed ASCI supercomputer 2 (DAS-2). http://www.cs.vu.nl/das2/.Google ScholarGoogle Scholar
  8. Demers, A., Greene, D., Hauser, C., Irish, W., Larson, J., Shenker, S., Sturgis, H., Swinehart, D., and Terry, D. 1987. Epidemic algorithms for replicated database maintenance. In Proceedings of the 6th Annual ACM Symposium on Principles of Distributed Computing (PODC'87). ACM Press, 1--12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Dorogovtsev, S. N. and Mendes, J. F. F. 2002. Evolution of networks. Advan. Phys. 51, 1079--1187.Google ScholarGoogle ScholarCross RefCross Ref
  10. Eugster, P. T., Guerraoui, R., Handurukande, S. B., Kermarrec, A.-M., and Kouznetsov, P. 2003. Lightweight probabilistic broadcast. ACM Trans. Comput. Syst. 21, 4, 341--374. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Eugster, P. T., Guerraoui, R., Kermarrec, A.-M., and Massoulié, L. 2004. Epidemic information dissemination in distributed systems. IEEE Comput. 37, 5 (May), 60--67. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Ganesh, A. J., Kermarrec, A.-M., and Massoulié, L. 2003. Peer-to-peer membership management for gossip-based protocols. IEEE Trans. Comput. 52, 2 (Feb.). Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Gupta, I., Birman, K. P., and van Renesse, R. 2002. Fighting fire with fire: using randomized gossip to combat stochastic scalability limits. Qual. Reliabi. Engin. Int. 18, 3, 165--184.Google ScholarGoogle ScholarCross RefCross Ref
  14. Jelasity, M., Guerraoui, R., Kermarrec, A.-M., and van Steen, M. 2004. The peer sampling service: Experimental evaluation of unstructured gossip-based implementations. In Middleware 2004, H.-A. Jacobsen, Ed. Lecture Notes in Computer Science, vol. 3231. Springer-Verlag, 79--98. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Jelasity, M., Kowalczyk, W., and van Steen, M. 2003. Newscast computing. Tech. rep. IR-CS-006 (Nov.), Department of Computer Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.Google ScholarGoogle Scholar
  16. Jelasity, M., Kowalczyk, W., and van Steen, M. 2004. An approach to massively distributed aggregate computing on peer-to-peer networks. In Proceedings of the 12th Euromicro Conference on Parallel, Distributed and Network-Based Processing (PDP'04). IEEE Computer Society, 200--207.Google ScholarGoogle ScholarCross RefCross Ref
  17. Jelasity, M., Montresor, A., and Babaoglu, O. 2004. A modular paradigm for building self-organizing peer-to-peer applications. In Engineering Self-Organising Systems, G. Di Marzo Serugendo, A. Karageorgos, O. F. Rana, and F. Zambonelli, Eds. Lecture Notes in Artificial Intelligence, vol. 2977. Springer, 265--282.Google ScholarGoogle Scholar
  18. Jelasity, M., Montresor, A., and Babaoglu, O. 2005. Gossip-based aggregation in large dynamic networks. ACM Trans. Comput. Syst. 23, 2 (May). Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Karp, R. M., Schindelhauer, C., Shenker, S., and Vöcking, B. 2000. Randomized Rumor Spreading. In 14th Symposium on the Foundations of Computer Science. IEEE Computer Society Press, Los Alamitos, CA., 565--574. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Kempe, D., Dobra, A., and Gehrke, J. 2003. Gossip-based computation of aggregate information. In Proceedings of the 44th Annual IEEE Symposium on Foundations of Computer Science (FOCS'03). IEEE Computer Society, 482--491. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Kermarrec, A.-M., Massoulié, L., and Ganesh, A. J. 2003. Probablistic reliable dissemination in large-scale systems. IEEE Trans. Parall. Distrib. Syst. 14, 3 (March). Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. King, V. and Saia, J. 2004. Choosing a random peer. In Proceedings of the 23rd annual ACM Symposium on Principles of Distributed Computing (PODC'04). ACM Press, 125--130. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Kostić, D., Rodriguez, A., Albrecht, J., Bhirud, A., and Vahdat, A. 2003. Using random subsets to build scalable network services. In Proceedings of the USENIX Symposium on Internet Technologies and Systems (USITS'03). Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Kowalczyk, W. and Vlassis, N. 2005. Newscast EM. In 17th Advances in Neural Information Processing Systems (NIPS). L. K. Saul, Y. Weiss, and L. Bottou, Eds. MIT Press, Cambridge, MA, 713--720.Google ScholarGoogle Scholar
  25. Law, C. and Siu, K.-Y. 2003. Distributed construction of random expander graphs. In Proceedings of The 22nd Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM'03). San Francisco, CA.Google ScholarGoogle Scholar
  26. Li, M. and Vitányi, P. 1997. An Introduction to Kolmogorov Complexity and its Applications 2nd Ed. Springer Verlag. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Loguinov, D., Kumar, A., Rai, V., and Ganesh, S. 2003. Graph-theoretic analysis of structured peer-to-peer systems: Routing distances and fault resilience. In Proceedings of ACM SIGCOMM 2003. ACM Press, 395--406. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Marsaglia, G. 1995. The Marsaglia random number CDROM including the Diehard battery of tests of randomness. Florida State University. http://www.stat.fsu.edu/pub/diehard.Google ScholarGoogle Scholar
  29. Marsaglia, G. and Tsang, W. W. 2002. Some difficult-to-pass tests of randomness. J. Statis. Softw. 7, 3, 1--8.Google ScholarGoogle ScholarCross RefCross Ref
  30. Montresor, A., Jelasity, M., and Babaoglu, O. 2004. Robust aggregation protocols for large-scale overlay networks. In Proceedings of the International Conference on Dependable Systems and Networks (DSN). IEEE Computer Society, 19--28. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Newman, M. E. J. 2002. Random graphs as models of networks. In Handbook of Graphs and Networks: From the Genome to the Internet, S. Bornholdt and H. G. Schuster Eds., John Wiley, New York, NY (Chapter 2)Google ScholarGoogle Scholar
  32. Pandurangan, G., Raghavan, P., and Upfal, E. 2003. Building low-diameter peer-to-peer networks. IEEE J. Selec. Areas Comm. 21, 6 (Aug.) 995--1002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Pastor-Satorras, R. and Vespignani, A. 2001. Epidemic dynamics and endemic states in complex networks. Phys. Rev. E 63, 066117.Google ScholarGoogle ScholarCross RefCross Ref
  34. PeerSim. PeerSim. http://peersim.sourceforge.net/.Google ScholarGoogle Scholar
  35. Pittel, B. 1987. On spreading a rumor. SIAM J. Appl. Math. 47, 1 (Feb.) 213--223. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Ratnasamy, S., Francis, P., Handley, M., Karp, R., and Schenker, S. 2001. A scalable content-addressable network. In Proceedings of the Conference on Applications, Technologies, Architectures, and Protocols for Computer Communications (SIGCOMM). ACM Press, 161--172. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Rowstron, A. and Druschel, P. 2001. Pastry: Scalable, distributed object location and routing for large-scale peer-to-peer systems. In Middleware 2001. R. Guerraoui Ed. Lecture Notes in Computer Science, vol. 2218. Springer-Verlag, 329--350. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Saroiu, S., Gummadi, P. K., and Gribble, S. D. 2003. Measuring and analyzing the characteristics of Napster and Gnutella hosts. Multim. Syst. J. 9, 2 (Aug.) 170--184. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Sen, S. and Wang, J. 2004. Analyzing Peer-to-Peer Traffic Across Large Networks. IEEE/ACM Trans. Network. 12, 2 (April) 219--232. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Stavrou, A., Rubenstein, D., and Sahu, S. 2004. A Lightweight, Robust P2P System to Handle Flash Crowds. IEEE J. Select. Areas Comm. 22, 1 (Jan.) 6--17. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Stoica, I., Morris, R., Karger, D., Kaashoek, M. F., and Balakrishnan, H. 2001. Chord: A scalable peer-to-peer lookup service for internet applications. In Proceedings of the Conference on Applications, Technologies, Architectures, and Protocols for Computer Communications (SIGCOMM). ACM Press, 149--160. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Sun, Q. and Sturman, D. 2000. A Gossip-Based Reliable Multicast for Large-Scale High-Throughput Applications. In International Conference on Dependable Systems and Networks. IEEE Computer Society Press, Los Alamitos, CA., 347--358. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. van Renesse, R., Birman, K. P., and Vogels, W. 2003. Astrolabe: A robust and scalable technology for distributed system monitoring, management, and data mining. ACM Trans. Comput. Syst. 21, 2 (May) 164--206. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. van Renesse, R., Minsky, Y., and Hayden, M. 1998. A gossip-style failure detection service. In Middleware 1998. 55--70. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Voulgaris, S., Gavidia, D., and van Steen., M. 2005. CYCLON: Inexpensive membership management for unstructured P2P overlays. J. Netw. Syst. Manag. 13, 2, 197--217.Google ScholarGoogle ScholarCross RefCross Ref
  46. Voulgaris, S. and van Steen, M. 2003. An Epidemic Protocol for Managing Routing Tables in very large Peer-to-Peer Networks. In 14th Workshop on Distributed Systems: Operations and Management. Lecture Notes in Computer Science, vol. 2867. Springer-Verlag, Berlin, 41--54.Google ScholarGoogle Scholar
  47. Watts, D. J. and Strogatz, S. H. 1998. Collective dynamics of 'small-world' networks. Nature 393, 440--442.Google ScholarGoogle ScholarCross RefCross Ref
  48. Zhong, M., Shen, K., and Seiferas, J. 2005. Non-uniform random membership management in peer-to-peer networks. In Proceedings of the IEEE INFOCOM.Google ScholarGoogle Scholar

Index Terms

  1. Gossip-based peer sampling

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader