skip to main content
10.1145/133994.134061acmconferencesArticle/Chapter ViewAbstractPublication PagessiggraphConference Proceedingsconference-collections
Article
Free Access

Merging virtual objects with the real world: seeing ultrasound imagery within the patient

Authors Info & Claims
Published:01 July 1992Publication History
First page image

References

  1. Brinkley 1978.Brinkley, J. F., Moritz, W.E., and Baker, D.W. "Ultrasonic Three-Dimensional Imaging and Volume From a Series of Arbitrary Sector Scans." Ultrasound in Med. &Biol., 4, pp317-327.Google ScholarGoogle ScholarCross RefCross Ref
  2. Collet Billon 1990.Collet Billon, A., Philips Paris Research Lab. Personal Communication.Google ScholarGoogle Scholar
  3. Fornage 1990.Fornage, B. D., Sneige, N., Faroux, M.J., and Andry, E. "Sonographic appearance and ultrasound guided fine-nee~Jle aspiration biopsy of brest carcinomas smaller than 1 cm . lournal of Ultrasound in Medicine, 9, pp559-568.Google ScholarGoogle Scholar
  4. Fuchs 1985.Fuchs, H., GoldFeather, j., Hultiquist, J.P., Spach, S., Austin, J., Brooks, Jr., F.P. Eyles, J., and Poulton, J. "Fast Spheres, Textures, Transparencies, and Image Enhancements in Pixel Planes." Computer Graph&'s (Proceedings of SIGGRAPH' 85 ), 19(3), ppl 11-120. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Fuchs 1989.Fuchs, H., Poulton, J., Eyles, J., Greer, T., Goldfeather, j., Ellsworth, D., Molnar. S., and israel, L. "'Pixel Planes 5: A Heterogeneous Multiprocessor Graphics System Using Processor-Enhanced Memories." Computer Graphit's (Proceedings of SIGGRAPH' 89), 23(3), pp79-88. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Galyean 1991.Galyean, T. A., and Hughes, J.F. "'Sculpting: An Interactive Volumetric Modeling Technique." ComputerGraphits (Prot'eedings of SIGGRAPH' 89), 25(4 ), pp267-274. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Geiser 1982a.Geiser, E. A. Ariet, M., Conetta, D.A., Lupkiewicz, S.M., Christie, L.G., and Conti, C.R. "Dynamic three-dimensional echocardiographic reconstruction of the intact human left ventricle: Technique and initial observations in patients."Amerit'an Heart journal, 10316), pp1056-1065.Google ScholarGoogle Scholar
  8. Geiser 1982b.Geiser, E. A., Christie, L.G., Conetta, D.A., Conti, C.R., and Gossman, G.S. "Mechanical Arm for Spatial Registration of Two-Dimensional Echographic Sections." Cathet. Cariovas~'. Diagn., 8, pp89- I01.Google ScholarGoogle ScholarCross RefCross Ref
  9. Ghosh 1982.Ghosh, A., Nanda, C.N., and Maurer, G. "'Three- Dimensional Reconstruction of Echo-Cardiographics Images Using The Rotation Method." Ultrasound in Med. & Biol.,S(6), pp655-661.Google ScholarGoogle Scholar
  10. Haddad 1991.Haddad, R. A., and Parsons, T.W. Digital Signal Processing, Theory, Appli~'ations, and Hardware. New York, Computer Science Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Harris 1990.Harris, R. A., Follett, D.H., Halliwell, M, and Wells, P.N.T. "Ultimate limits in ultrasonic imaging resolution." Ultrasound in Medicine and Biology, 17(6), pp547-558.Google ScholarGoogle ScholarCross RefCross Ref
  12. Hildreth 1983.Hildreth, E. C. "The Detection of Intensity Changes by Computer and Biological Vision Systems." Computer Vision, Graphites, and Image Processing, 22, ppl-27.Google ScholarGoogle Scholar
  13. Hottier 1989.Hottier, F., Philips Paris Research Lab. Personal Communication.Google ScholarGoogle Scholar
  14. Hottier 1990.Hottier, F., Collet Billon, A. 3D Echography: Status and Perspective. 3D Imaging in Medicine. Springer-Verlag. pp2 i-41.Google ScholarGoogle Scholar
  15. Itoh 1979.Itoh, M., and Yokoi, H. "'A computer-aided threedimensional display system for ultrasonic diagnosis of a breast tumor." Ultrasonics,, pp261-268.Google ScholarGoogle Scholar
  16. King 1990.King, D. L., King Jr., D.L., and Shao, M.Y. "Three- Dimensional Spatial Registration and interactive Display of Position and Orientation of Real-Time Ultrasound Images." Journal of Ultrasound Med, 9, pp525-532.Google ScholarGoogle ScholarCross RefCross Ref
  17. Lalouche 1989.Lalouche, R. C., Bickmore, D., Tessler, F., Mankovich, H.K., and Kangaraloo, H. "Three-dimensional reconstruction of ultrasound images "SPIE'89, Medical imaging, pp59-66.Google ScholarGoogle Scholar
  18. Leipnik 1960.Leipnik, R. "The extended entropy uncertainty principle." Info. Control, 3, ppl 8-25.Google ScholarGoogle Scholar
  19. Levoy 1988.Levoy, M. "Display of Surface from Volume Data." IEEE CG&A, 8(5), pp29-37. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Levoy 1990.Levoy, M. "A Hybrid Ray Tracer for Rendering Polygon and Volume Data." IEEE CG&A, 10(2), pp33-40. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Liang 1991.Liang, J., Shaw, C., and Green, M. "On Temporal- Spatial Realism in the Virtual Reality Environment." User Interface Software and Technology, 1991, Hilton Head, SC., U.S.A., pp19-25. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Lin 1991.Lin, W., Pizer, S.M., and Johnson, V.E. "Surface Estimation in Ultrasound Images." Information Processing in Medical Imaging 1991, Wye, U.K., Springer-Verlag, Heidelberg, pp285- 299. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Matsumoto 1981.Matsumoto, M., lnoue, M., Tamura, S., Tanaka, K., and Abe, H. "Three-Dimensional Echocardiography for Spatial Visualization and Volume Calculation of Cardiac Structures." J. Clin. Ultrasound, 9, pp157-165.Google ScholarGoogle ScholarCross RefCross Ref
  24. McCann 1988.McCann, H. A., Sharp, J.S., Kinter, T.M., McEwan, C.N., Bariliot, C., and Greenleaf, J.F. "Multidimensional Ultrasonic Imaging for Cardiology." Proc.IEEE, 76(9), pp1063- 1073.Google ScholarGoogle ScholarCross RefCross Ref
  25. Mills 1990.Mills, P. H., and Fuchs, H. "3D Ultrasound Display Using Optical Tracking." First Conference on Visualization for Biomedical Computing, Atlanta, GA, IEEE, pp490-497.Google ScholarGoogle Scholar
  26. Miyazawa 1991.Miyazawa, T. "A high-speed integrated rendering for interpreting multiple variable 3D data." SPIE, 1459(5),Google ScholarGoogle Scholar
  27. Molnar 1992.Molnar, S., Eyles, J., and Poulton, J. "PixelFlow: High-Speed Rendering Using Image Composition." Computer Graphics (Proceedings of SIGGRAPH'92), ((In this issue)), Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Moritz 1983.Moritz, W. E., Pearlman, A.S., McCabe, D.H., Medema, D.K., Ainsworth, M.E., and Boles, M.S. "An Ultrasonic Techinique for Imaging the Ventricle in Three Dimensions and Calculating Its Volume." IEEE Trans. Biota. Eng., BME-30(8), pp482-492.Google ScholarGoogle Scholar
  29. Nakamura 1984.Nakamura, S. "Three-Dimensional Digital Display of Ultrasonograms." IEEE CG&A, 4(5), pp36-45. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Ohbuchi 1990.Ohbuchi, R., and Fuchs, H. "Incremental 3D Ultrasound Imaging from a 2D Scanner." First Conference on Visualization in Biomedical Computing, Atlanta, GA, IEEE, pp360- 367.Google ScholarGoogle Scholar
  31. Ohbuchi 1991.Ohbuchi, R., and Fuchs, H. "Incremental Volume Rendering Algorithm for Interactive 3D Ultrasound Imaging." information Processing in Medical Imaging 1991 (Lecture Notes in Computer Science, Springer-Verlag), Wye, UK, Springer- Verlag, pp486-500. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Pini 1990.Pini, R., Monnini, E., Masotti, L., Novins, K. L., Greenberg, D. P., Greppi, B., Cerofolini, M., and Devereux, R. B. "Echocardiographic Three-Dimensional Visualization of the Heart." 3D Imaging in Medicine, Travemiinde, Germany, F 60, Springer-Verlag, pp263-274.Google ScholarGoogle Scholar
  33. Polhemus 1980.Polhemus. 3Space Isotrak User's Manual.Google ScholarGoogle Scholar
  34. Raichelen 1986.Raichelen, J. S., Trivedi, S.S., Herman, G.T., Sutton, M.G., and Reichek, N. "Dynamic Three Dimensional Reconstruction of the Left Ventricle From Two-Dimensional Echocardiograms." Journal. Amer. Coll. of Cardiology, 8(2), pp364-370.Google ScholarGoogle ScholarCross RefCross Ref
  35. Robinett 1991.Robinett, W., and Rolland, J.P. "A Computational Model for the Stereoscopic Optics of a Head-Mounted Display." Presence, 1(1), pp45-62. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Sabella 1988.Sabeila, P. "A Rendering Algorithm for Visualizing 3D Scalar Fields." Computer Graphics (Proceedings of SIGGRAPH'88), 22(4), pp51-58. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Shattuck 1984.Shattuck, D. P., Weishenker, M.D., Smith, S.W., and yon Ramm, O.T. "Explososcan: A Parallel Processing Technique for High Speed Ultrasound Imaging with Linear Phased Arrays." JASA, 75(4), pp1273-1282.Google ScholarGoogle ScholarCross RefCross Ref
  38. Smith 1991.Smith, S. W., Pavy, Jr., S.G., and yon Ramm, O.T. "High-Speed Ultrasound Volumetric Imaging System - Part I: Transducer Design and Beam Steering." IEEE Transaction on Ultrasonics, Ferroelectrics, and Frequency Control, 38(2), ppl00-108.Google ScholarGoogle Scholar
  39. Stickels 1984.Stickels, K. R., and Warm, L.S. "An Analysis of Three-Dimensional Reconstructive Echocardiography." Ultrasound in Med. & Biol., 10(5), pp575-580.Google ScholarGoogle ScholarCross RefCross Ref
  40. Thijssen 1990.Thijssen, J. M., and Oosterveld, B.J. "Texture in Tissue Echograms, Speckle or Information ?" Journal of Ultrasound in Medicine, 9, pp215-229.Google ScholarGoogle ScholarCross RefCross Ref
  41. Tomographic Technologies 1991.Tomographic Technologies, G. Echo-CT.Google ScholarGoogle Scholar
  42. Upson 1988.Upson, C., and Keeler, M. "VBUFFER: Visible Volume Rendering." ACM Computer Graphics (Proceedings of SIGGRAPH' 88 ), 22(4), pp59-64. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. von Ramm 1991.von Ramm, O. T., Smith, S.W., and Pavy, Jr., H.G. "High-Speed Ultrasound Volumetric Imaging System - Part II: Parallel Processing and Image Display." IEEE Transaction on Ultrasonics, Ferroelectrics, and Frequency Control, 38(2), ppl09-115.Google ScholarGoogle Scholar
  44. Ward 1992.Ward, M., Azuma, R., Bennett, R., Gottschalk, S., and Fuchs, H. "A Demonstrated Optical Tracker with Scalable Work Area for Head-Mounted Display Systems." 1992 Symposium on Interactive 3D Graphics, Cambridge, MA., ACM, pp43-52. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Wells 1977.Wells, P. N. T. Biomedical ultrasonics. London, Academic Press.Google ScholarGoogle Scholar

Index Terms

  1. Merging virtual objects with the real world: seeing ultrasound imagery within the patient

              Recommendations

              Comments

              Login options

              Check if you have access through your login credentials or your institution to get full access on this article.

              Sign in
              • Published in

                cover image ACM Conferences
                SIGGRAPH '92: Proceedings of the 19th annual conference on Computer graphics and interactive techniques
                July 1992
                420 pages
                ISBN:0897914791
                DOI:10.1145/133994

                Copyright © 1992 ACM

                Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

                Publisher

                Association for Computing Machinery

                New York, NY, United States

                Publication History

                • Published: 1 July 1992

                Permissions

                Request permissions about this article.

                Request Permissions

                Check for updates

                Qualifiers

                • Article

                Acceptance Rates

                SIGGRAPH '92 Paper Acceptance Rate45of213submissions,21%Overall Acceptance Rate1,822of8,601submissions,21%

                Upcoming Conference

                SIGGRAPH '24

              PDF Format

              View or Download as a PDF file.

              PDF

              eReader

              View online with eReader.

              eReader