skip to main content
article

Improving NAND Flash Based Disk Caches

Published:01 June 2008Publication History
Skip Abstract Section

Abstract

Flash is a widely used storage device that provides high density and low power, appealing properties for general purpose computing. Today, its usual application is in portable special purpose devices such as MP3 players. In this paper we examine its use in the server domain—a more general purpose environment. Aggressive process scaling and the use of multi-level cells continues to improve density ahead of Moore’s Law predictions, making Flash even more attractive as a general purpose memory solution. Unfortunately, reliability limits the use of Flash. To seriously consider Flash in the server domain, architectural support must exist to address this concern. This paper first shows how Flash can be used in today’s server platforms as a disk cache. It then proposes two improvements. The first improves performance and reliability by splitting Flash based disk caches into separate read and write regions. The second improves reliability by employing a programmable Flash memory controller. It can change the error code strength (number of correctable bits) and the number of bits that a memory cell can store (cell density) according to the demands of the application. Our studies show that Flash reduces overall power consumed by the system memory and hard disk drive up to 3 times while maintaining performance. We also show that Flash lifetime can be improved by a factor of 20 when using a programmable Flash memory controller, if some performance degradation (below 5%) is acceptable.

References

  1. Flash Solid State Drive. http://www.samsung.com/ Products/Semiconductor/FlashSSD/index. htm.Google ScholarGoogle Scholar
  2. Hard Disk Drive Specification Hitachi Travelstar 7K60 2.5 inch ATA/IDE Hard Disk Drive Model: HTS726060M9AT00. http://www.hitachigst. com/tech/techlib.nsf/techdocs/ 53989D390D44D88F86256D1F0058368D/$file/ T7K60_sp2.0.pdf.Google ScholarGoogle Scholar
  3. Hybrid Hard Drives with Non-Volatile Flash and Longhorn. http://www.samsung.com/Products/ HardDiskDrive/news/HardDiskDrive_ 20050425_0000117556.htm.Google ScholarGoogle Scholar
  4. Samsung NAND Flash Memory Datasheet. http://www.samsung.com/products/ semiconductor/NANDFlash/SLC_LargeBlock/ 8Gbit/K9K8G08U0A/K9K8G08U0A.htm.Google ScholarGoogle Scholar
  5. Seagate Barracuda. http://www.seagate.com/ products/personal/index.html.Google ScholarGoogle Scholar
  6. Technical Note: TrueFFS Wear-Leveling Mechanism(TN-DOC-017). http://www.embeddedfreebsd. org/Documents/TrueFFS_Wear_Leveling_ Mechanism.pdf.Google ScholarGoogle Scholar
  7. The Micron System-Power Calculator. http://www. micron.com/products/dram/syscalc.html.Google ScholarGoogle Scholar
  8. University of Massachusetts Trace Repository. http://traces.cs.umass.edu/index.php/ Storage/Storage.Google ScholarGoogle Scholar
  9. Wear Leveling in Single Level Cell NAND Flash Memories. http://www.st.com/stonline/products/ literature/an/10122.pdf.Google ScholarGoogle Scholar
  10. N. Binkert, R. Dreslinski, L. Hsu, K. Lim, A. Saidi, and S. Reinhardt. The M5 simulator: Modeling networked systems. IEEE Micro, 26(4):52-60, Jul/Aug 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. T. Cho, Y. Lee, E. Kim, J. Lee, S. Choi, S. Lee, D. Kim, W. Han, Y. Lim, J. Lee, J. Choi, and K. Suh. A dual-mode NAND flash memory: 1-Gb multilevel and high-performance 512-mb single-level modes. IEEE Journal of Solid State Circuits, 36(11), Nov 2001.Google ScholarGoogle Scholar
  12. T. Hara, K. Fukuda, K. Kanazawa, N. Shibata, K. Hosono, H. Maejima, M. Nakagawa, T. Abe, M. Kojima, M. Fujiu, Y. Takeuchi, K. Amemiya, M. Morooka, T. Kamei, H. Nasu, C. Wang, K. Sakurai, N. Tokiwa, H. Waki, T. Maruyama, S. Yoshikawa, M. Higashitani, T. D. Pham, Y. Fong, and T. Watanabe. A 146mm2 8Gb Multi-Level NAND Flash Memory With 70-nm CMOS Technology. IEEE Journal of Solid State Circuits, 41(1), Jan 2006.Google ScholarGoogle ScholarCross RefCross Ref
  13. R. Hobson and K. Cheung. A High-Performance CMOS 32-Bit Parallel CRC Engine. IEEE Journal of Solid State Circuits, 34(2), Feb 1999.Google ScholarGoogle ScholarCross RefCross Ref
  14. D. Ielmini, A. S. Spinelli, A. L. Lacaita, and M. J. van Duuren. A Comparative Study of Characterization Techniques for Oxide Reliability in Flash Memories. IEEE trans. on device and materials and reliability, 4(3), Sep 2004.Google ScholarGoogle Scholar
  15. T. Kgil. Architecting Energy Efficient Servers. PhD thesis, University of Michigan, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. T. Kgil and T. Mudge. FlashCache: a NAND flash memory file cache for low power web servers. In Proc. Int'l Conf. on Compilers, Architecture and Synthesis for Embedded Systems , 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. K. Kim and J. Choi. Future Outlook of NAND Flash Technology for 40nm Node and Beyond. In Workshop on Non-Volatile Semiconductor Memory, pages 9-11, Feb 2006.Google ScholarGoogle ScholarCross RefCross Ref
  18. J. Lee, S. Lee, O. Kwon, K. Lee, D. Byeon, I. Kim, K. Lee, Y. Lim, B. Choi, J. Lee, W. Shin, J. Choi, and K. Suh. A 90-nm CMOS 1.8-V 2-Gb NAND Flash Memory for Mass Storage Applications. IEEE Journal of solid-state circuits, 38(11), Nov 2003.Google ScholarGoogle Scholar
  19. S. Lee, Y. Lee, W. Han, D. Kim, M. Kim, S. Moon, H. Cho, J. Lee, D. Byeon, Y. Lim, H. Kim, S. Hur, and K. Suh. A 3.3V 4Gb Four-Level NAND Flash Memory with 90nm CMOS Technology. In Proc. Int'l Solid-State Circuits Conference , pages 52-53, 2004.Google ScholarGoogle Scholar
  20. C. Lefurgy, K. Rajamani, F. Rawson, W. Felter, M. Kistler, and T. Keller. Energy management for commercial servers. IEEE Computer, 36(12):39-48, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. S. Lin and D. Costello. Error Control Coding, Second Edition . 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. R. Micheloni, R. Ravasio, A. Marelli, E. Alice, V. Altieri, A. Bovino, L. Crippa, E. D. Martino, L. D. Onofrio, A. Gambardella, E. Grillea, G. Guerra, D. Kim, C. Missiroli, I. Motta, A. Prisco, G. Ragone, M. Romano, M. Sangalli, P. Sauro, M. Scotti, and S. Won. A 4Gb 2b/cell NAND Flash Memory with Embedded 5b BCH ECC for 36MB/s System Read Throughput. In Proc. Int'l Solid-State Circuits Conference, pages 497-506, Feb 2006.Google ScholarGoogle ScholarCross RefCross Ref
  23. N. Mielke, H. Belgal, I. Kalastirsky, P. Kalavade, A. Kurtz, Q. Meng, N. Righos, and J. Wu. Flash EEPROM Threshold Instabilities due to Charge Trapping During Program/Erase Cycling. IEEE trans. on device and materials and reliability, 4(3), Sep 2004.Google ScholarGoogle Scholar
  24. A. Modelli, A. Visconti, and R. Bez. Advanced Flash Memory Reliability. In Proc. of Int'l Conf. on Integrated Circuit Design and Technology, pages 211-218, 2004.Google ScholarGoogle ScholarCross RefCross Ref
  25. C. Park, J. Seo, S. Bae, H. Kim, S. Kim, and B. Kim. A Low-cost Memory Architecture With NAND XIP for Mobile Embedded Systems. In Proc. Int'l Conf. on HW-SW Codesign and System Synthesis(CODES+ISSS), Oct 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. M. Wu and W. Zwaenepoel. eNVy: A Non-Volatile, Main Memory Storage System. In Proc. Int'l Conf. on Arch. Support for Prog. Lang. and Oper. Sys., Oct. 1994. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Improving NAND Flash Based Disk Caches

              Recommendations

              Comments

              Login options

              Check if you have access through your login credentials or your institution to get full access on this article.

              Sign in

              Full Access

              • Published in

                cover image ACM SIGARCH Computer Architecture News
                ACM SIGARCH Computer Architecture News  Volume 36, Issue 3
                June 2008
                449 pages
                ISSN:0163-5964
                DOI:10.1145/1394608
                Issue’s Table of Contents
                • cover image ACM Conferences
                  ISCA '08: Proceedings of the 35th Annual International Symposium on Computer Architecture
                  June 2008
                  449 pages
                  ISBN:9780769531748

                Copyright © 2008 Authors

                Publisher

                Association for Computing Machinery

                New York, NY, United States

                Publication History

                • Published: 1 June 2008

                Check for updates

                Qualifiers

                • article

              PDF Format

              View or Download as a PDF file.

              PDF

              eReader

              View online with eReader.

              eReader