skip to main content
research-article

Staggered projections for frictional contact in multibody systems

Published:01 December 2008Publication History
Skip Abstract Section

Abstract

We present a new discrete velocity-level formulation of frictional contact dynamics that reduces to a pair of coupled projections and introduce a simple fixed-point property of this coupled system. This allows us to construct a novel algorithm for accurate frictional contact resolution based on a simple staggered sequence of projections. The algorithm accelerates performance using warm starts to leverage the potentially high temporal coherence between contact states and provides users with direct control over frictional accuracy. Applying this algorithm to rigid and deformable systems, we obtain robust and accurate simulations of frictional contact behavior not previously possible, at rates suitable for interactive haptic simulations, as well as large-scale animations. By construction, the proposed algorithm guarantees exact, velocity-level contact constraint enforcement and obtains long-term stable and robust integration. Examples are given to illustrate the performance, plausibility and accuracy of the obtained solutions.

Skip Supplemental Material Section

Supplemental Material

a164-kaufman-mp4_hi.mov

mov

384.2 MB

References

  1. Anitescu, M., and Hart, G. D. 2004. A fixed-point iteration approach for multibody dynamics with contact and small friction. Mathematical Programming 101, 1, 3--32.Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Anitescu, M., and Potra, F. R. 1997. Formulating dynamic multirigid-body contact problems with friction as solvable linear complementarity problems. ASME Nonlinear Dynamics 14, 231--247.Google ScholarGoogle ScholarCross RefCross Ref
  3. Baraff, D., and Witkin, A. P. 1992. Dynamics simulation of non-penetrating flexible bodies. In Computer Graphics (SIGGRAPH 92), 303--308. Google ScholarGoogle Scholar
  4. Baraff, D. 1989. Analytical methods for dynamic simulation of non-penetrating rigid bodies. In Computer Graphics (SIGGRAPH 89), 223--232. Google ScholarGoogle Scholar
  5. Baraff, D. 1991. Coping with friction for non-penetrating rigid body simulation. In Computer Graphics (SIGGRAPH 91), 31--41. Google ScholarGoogle Scholar
  6. Baraff, D. 1993. Issues in computing contact forces for non-penetrating rigid bodies. Algorithmica 10, 2--4, 292--352.Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Baraff, D. 1994. Fast contact force computation for nonpenetrating rigid bodies. In Proc. ACM SIGGRAPH 94, 23--34. Google ScholarGoogle Scholar
  8. Barbič, J., and James, D. L. 2005. Real-time subspace integration for St. Venant-Kirchhoff deformable models. ACM Trans. Graph. (SIGGRAPH 05) 24, 3, 982--990. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Bauschke, H. 2000. Projection algorithms: results and open problems. In Inherently Parallel Algorithms in Feasibility and Optimization and their Applications, 11--22.Google ScholarGoogle Scholar
  10. Boyd, S., and Vandenberghe, L. 2004. Convex Optimization. Cambridge. Google ScholarGoogle Scholar
  11. Bridson, R., Fedkiw, R. P., and Anderson, J. 2002. Robust treatment of collisions, contact, and friction for cloth animation. ACM Trans. Graph. (SIGGRAPH 02) 21, 3, 594--603. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Brogliato, B. 1999. Nonsmooth Mechanics. Springer--Verlag.Google ScholarGoogle Scholar
  13. Cirak, F., and West, M. 2005. Decomposition contact response (DCR) for explicit finite element dynamics. International Journal for Numerical Methods in Engineering 64, 8, 1078--1110.Google ScholarGoogle ScholarCross RefCross Ref
  14. Duriez, C., Dubois, F., Andriot, C., and Kheddar, A. 2006. Realistic haptic rendering of interacting deformable objects in virtual environments. IEEE Transactions on Visualization and Computer Graphics. Google ScholarGoogle Scholar
  15. Erdmann, M. E. 1994. On a representation of friction in configuration space. The International Journal of Robotics Research 13, 3, 240--271.Google ScholarGoogle ScholarCross RefCross Ref
  16. Erleben, K. 2007. Velocity-based shock propagation for multibody dynamics animation. ACM Trans. Graph. 26, 2. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Ferris, M. C., and Munson, T. S. 1998. Complementarity problems in GAMS and the PATH solver. Mathematical Programming Technical Report 98--12.Google ScholarGoogle Scholar
  18. Fichera, G. 1964. Problemi elastostatici con vincoli unilaterali: il problema di Signorini con ambique condizioni al contorno. Mem. Ace. Naz. Lincei 8, 7, 91--14.Google ScholarGoogle Scholar
  19. Gibson, S. F., and Mirtich, B. 1997. A survey of de-formable models in computer graphics. Technical Report TR-97-19, MERL.Google ScholarGoogle Scholar
  20. Goldfarb, D., and Idnani, G. 1983. A numerically stable dual method for solving strictly convex quadratic programs. Mathematical Programming 27, 1--33.Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Guendelman, E., Bridson, R., and Fedkiw, R. 2003. Non-convex rigid bodies with stacking. ACM Trans. Graph. (SIGGRAPH 03) 22, 3, 871--878. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Hahn, J. K. 1988. Realistic animation of rigid bodies. In Computer Graphics (SIGGRAPH 88), 299--308. Google ScholarGoogle Scholar
  23. Harmon, D., Vouga, E., Tamstorf, R., and Grinspun, E. 2008. Robust treatment of simultaneous collisions. ACM Trans. Graph. (SIGGRAPH 08) 27, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Hauser, K. K., Shen, C., and O'Brien, J. F. 2003. Interactive deformation using modal analysis with constraints. In Graphics Interface, 247--255.Google ScholarGoogle Scholar
  25. Hertz, H. 1882. On the contact of elastic solids. J. Reine und. Angewandte Mathmatik 92, 156, 156--171.Google ScholarGoogle Scholar
  26. Irving, G., Schroeder, C., and Fedkiw, R. 2007. Volume conserving finite element simulations of deformable models. ACM Trans. Graph. (SIGGRAPH 07) 26, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. James, D. L., and Pai, D. K. 2004. BD-Tree: Output-sensitive collision detection for reduced deformable models. ACM Trans. Graph. (SIGGRAPH 04) 23, 3, 393--398. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Johnson, K. L. 1985. Contact Mechanics. Cambridge.Google ScholarGoogle Scholar
  29. Jourdan, F., Alart, P., and Jean, M. 1998. A Gauss-Seidel like algorithm to solve frictional contact problems. Comput. Methods Appl. Mech. Eng. 155, 31--47.Google ScholarGoogle ScholarCross RefCross Ref
  30. Kaufman, D. M., Edmunds, T., and Pai, D. K. 2005. Fast frictional dynamics for rigid bodies. ACM Trans. Graph. (SIGGRAPH 05) 24, 3, 946--956. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Kikuchi, N., and Oden, J. 1988. Contact Problems in Elasticity: A study of variational inequalities and finite element methods. SIAM Studies in Applied and Numerical Mathematics.Google ScholarGoogle Scholar
  32. Klarbring, A. 1986. A mathematical programming approach to three-domensional contact problems with friction. Comput. Methods Appl. Mech. Eng. 58, 175--200. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Lö tstedt, P. 1984. Numerical simulation of time-dependent contact friction problems in rigid body mechanics. SIAM Journal of Scientific Statistical Computing 5, 2, 370--393.Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Milenkovic, V. J., and Schmidl, H. 2001. Optimization-based animation. In Proc. ACM SIGGRAPH 01, 37--46. Google ScholarGoogle Scholar
  35. Mirtich, B., and Canny, J. F. 1995. Impulse-based dynamic simulation of rigid bodies. In Symposium on Interactive 3D Graphics. Google ScholarGoogle Scholar
  36. Moore, M., and Wilhelms, J. 1988. Collision detection and response for computer animation. In Computer Graphics (SIGGRAPH 88), 289--298. Google ScholarGoogle Scholar
  37. Moreau, J. J. 1966. Quadratic programming in mechanics: Onesided constraints. Journal SIAM Control 4, 1, 153--158.Google ScholarGoogle ScholarCross RefCross Ref
  38. Moreau, J. J. 1973. On unilateral constraints, friction and plasticity. New Variational Techniques in Mathematical Physics, 172--322.Google ScholarGoogle Scholar
  39. Murty, K., and Kabadi, S. 1987. Some NP-complete problems in quadratic and nonlinear programming. Mathematical Programing 39, 117--129. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Murty, K. G. 1988. Linear Complementarity, Linear and Nonlinear Programming. Helderman Verlag.Google ScholarGoogle Scholar
  41. Nealen, A., Mller, M., Keiser, R., Boxerman, E., and Carlson, M. 2005. Physically based deformable models in computer graphics. In Eurographics 2005.Google ScholarGoogle Scholar
  42. Otaduy, M. A., Germann, D., Redon, S., and Gross, M. 2007. Adaptive deformations with fast tight bounds. In Proc. of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Painlevé, P. 1895. Sur le lois du frottement de glissemment. C. R. Acad. Sci. Paris 121, 112--115.Google ScholarGoogle Scholar
  44. Pauly, M., Pai, D. K., and Guibas, L. 2004. Quasi-rigid objects in contact. In ACM SIGGRAPH Symposium on Computer Animation, ACM/Eurographics. Google ScholarGoogle Scholar
  45. Raghupathi, L., and Faure, F. 2006. QP-Collide: A new approach to collision treatment. In journées du groupe de travail Animation et Simulation (GTAS), 91--101.Google ScholarGoogle Scholar
  46. Redon, S., Kheddar, A., and Coquillart, S. 2002. Gauss' least constraints principle and rigid body simulations. In IEEE International Conference on Robotics and Automation.Google ScholarGoogle Scholar
  47. Schittkowski, K. 2005. QL: A Fortran code for convex quadratic programming - user's guide, Version 2.11. Report, Department of Mathematics, University of Bayreuth.Google ScholarGoogle Scholar
  48. Shabana, A. 2005. Dynamics of Multibody Systems, 3rd ed. Cambridge.Google ScholarGoogle Scholar
  49. Signorini, S. 1933. Sopra akune questioni di elastostatica. Atti della Societa Italiana per il Progresso della Scienze.Google ScholarGoogle Scholar
  50. Smith, R. 2006. Open Dynamics Engine, V0.5, user guide.Google ScholarGoogle Scholar
  51. Song, P., and Kumar, V. 2003. Distributed compliant model for efficient dynamic simulation of systems with frictional contacts. In The 2003 ASME Design Engineering Technical Conferences.Google ScholarGoogle Scholar
  52. Spillmann, J., Becker, M., and Teschner, M. 2007. Non-iterative computation of contact forces for deformable objects. Journal of WSCG 15, 13.Google ScholarGoogle Scholar
  53. Stewart, D., and Trinkle, J. C. 1996. An implicit time-stepping scheme for rigid body dynamics with inelastic collisions and Coulomb friction. International Journal Numerical Methods Engineering 39, 2673--2691.Google ScholarGoogle ScholarCross RefCross Ref
  54. Stewart, D. E. 2000. Rigid-body dynamics with friction and impact. SIAM Rev. 42, 1, 3--39. Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. Stewart, D. E. 2001. Finite-dimensional contact mechanics. Phil. Trans. R. Soc. Lond. A 359, 2467--2482.Google ScholarGoogle ScholarCross RefCross Ref
  56. Terzopoulos, D., and Witkin, A. 1988. Physically based models with rigid and deformable components. IEEE Computer Graphics and Applications 8, 6, 41--51. Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. Trinkle, J. C., Pang, J. S., Sudarsky, S., and Lo, G. 1995. On dynamic multi-rigid-body contact problems with Coulomb friction. Tech. rep., Texas A&M University, Department of Computer Science. Google ScholarGoogle Scholar
  58. Wasfy, T. M., and Noor, A. K. 2003. Computational strategies for flexible multibody systems. Applied Mechanics Reviews 56, 6 (November), 553--613.Google ScholarGoogle ScholarCross RefCross Ref
  59. Wriggers, P. 2002. Computational Contact Mechanics. John Wiley and Sons, Ltd.Google ScholarGoogle Scholar

Index Terms

  1. Staggered projections for frictional contact in multibody systems

            Recommendations

            Comments

            Login options

            Check if you have access through your login credentials or your institution to get full access on this article.

            Sign in

            Full Access

            • Published in

              cover image ACM Transactions on Graphics
              ACM Transactions on Graphics  Volume 27, Issue 5
              December 2008
              552 pages
              ISSN:0730-0301
              EISSN:1557-7368
              DOI:10.1145/1409060
              Issue’s Table of Contents

              Copyright © 2008 ACM

              Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

              Publisher

              Association for Computing Machinery

              New York, NY, United States

              Publication History

              • Published: 1 December 2008
              Published in tog Volume 27, Issue 5

              Permissions

              Request permissions about this article.

              Request Permissions

              Check for updates

              Qualifiers

              • research-article

            PDF Format

            View or Download as a PDF file.

            PDF

            eReader

            View online with eReader.

            eReader