skip to main content
10.1145/1553374.1553534acmotherconferencesArticle/Chapter ViewAbstractPublication PagesicmlConference Proceedingsconference-collections
research-article

Multi-instance learning by treating instances as non-I.I.D. samples

Published:14 June 2009Publication History

ABSTRACT

Previous studies on multi-instance learning typically treated instances in the bags as independently and identically distributed. The instances in a bag, however, are rarely independent in real tasks, and a better performance can be expected if the instances are treated in an non-i.i.d. way that exploits relations among instances. In this paper, we propose two simple yet effective methods. In the first method, we explicitly map every bag to an undirected graph and design a graph kernel for distinguishing the positive and negative bags. In the second method, we implicitly construct graphs by deriving affinity matrices and propose an efficient graph kernel considering the clique information. The effectiveness of the proposed methods are validated by experiments.

References

  1. Amar, R. A., Dooly, D. R., Goldman, S. A., & Zhang, Q. (2001). Multiple-instance learning of real-valued data. Proc. 18th Intl. Conf. Mach. Learn. (pp. 3--10). Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Andrews, S., Tsochantaridis, I., & Hofmann, T. (2003). Support vector machines for multiple-instance learning. In Adv. Neural Inf. Process. Syst. 15, 561--568. Cambridge, MA: MIT Press.Google ScholarGoogle Scholar
  3. Auer, P., & Ortner, R. (2004). A boosting approach to multiple instance learning. Proc. 15th Eur. Conf. Mach. Learn. (pp. 63--74).Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Blockeel, H., Page, D., & Srinivasan, A. (2005). Multi-instance tree learning. Proc. 22nd Intl. Conf. Mach. Learn. (pp. 57--64). Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Borgwardt, K. M., & Kriegel, H.-P. (2005). Shortestpath kernels on graphs. Proc. 5th IEEE Intl. Conf. Data Min. (pp. 74--81). Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Chen, Y., Bi, J., & Wang, J. Z. (2006). MILES: Multiple-instance learning via embedded instance selection. IEEE Trans. Patt. Anal. Mach. Intell., 28, 1931--1947. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Chen, Y., & Wang, J. Z. (2004). Image categorization by learning and reasoning with regions. J. Mach. Learn. Res., 5, 913--939. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Cheung, P.-M., & Kwok, J. T. (2006). A regularization framework for multiple-instance learning. Proc. 23rd Intl. Conf. Mach. Learn. (pp. 193--200). Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Chevaleyre, Y., & Zucker, J.-D. (2001). A framework for learning rules from multiple instance data. Proc. 12th Eur. Conf. Mach. Learn. (pp. 49--60). Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Csurka, G., Bray, C., Dance, C., & Fan, L. (2004). Visual categorization with bags of keypoints. ECCV Workshop on Statistical Learning in Computer Vision (pp. 59--74).Google ScholarGoogle Scholar
  11. Dietterich, T. G., Lathrop, R. H., & Lozano-Péérez, T. (1997). Solving the multiple-instance problem with axis-parallel rectangles. Artif. Intell., 89, 31--71. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Fung, G., Dundar, M., Krishnappuram, B., & Rao, R. B. (2007). Multiple instance learning for computer aided diagnosis. In Adv. Neural Inf. Process. Syst. 19, 425--432. Cambridge, MA: MIT Press.Google ScholarGoogle Scholar
  13. Gärtner, T. (2003). A survey of kernels for structured data. SIGKDD Explorations, 5, 49--58. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Gärtner, T., Flach, P. A., Kowalczyk, A., & Smola, A. J. (2002). Multi-instance kernels. Proc. 19th Intl. Conf. Mach. Learn. (pp. 179--186). Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Kwok, J. T., & Cheung, P.-M. (2007). Marginalized multi-instance kernels. Proc. 20th Intl. J. Conf. Artif. Intell. (pp. 901--906). Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Maron, O., & Lozano-Péérez, T. (1998). A framework for multiple-instance learning. In Adv. Neural Inf. Process. Syst. 10, 570--576. Cambridge, MA: MIT Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. McGovern, A., & Jensen, D. (2003). Identifying predictive structures in relational data using multiple instance learning. Proc. 20th Intl. Conf. Mach. Learn. (pp. 528--535).Google ScholarGoogle ScholarCross RefCross Ref
  18. Neuhaus, M., & Bunke, H. (2007). A quadratic programming approach to the graph edit distance problem. Proc. 6th IAPR Workshop on Graph-based Represent. in Patt. Recogn. (pp. 92--102). Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Rahmani, R., & Goldman, S. A. (2006). MISSL: Multiple-instance semi-supervised learning. Proc. 23rd Intl. Conf. Mach. Learn. (pp. 705--712). Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Ray, S., & Craven, M. (2005). Supervised versus multiple instance learning: An empirical comparison. Proc. 22nd Intl. Conf. Mach. Learn. (pp. 697--704). Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Ray, S., & Page, D. (2001). Multiple instance regression. Proc. 18th Intl. Conf. Mach. Learn. (pp. 425--432). Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Ruffo, G. (2000). Learning single and multiple instance decision trees for computer security applications. Doctoral dissertation, CS Dept., Univ. Turin, Torino, Italy.Google ScholarGoogle Scholar
  23. Scott, S. D., Zhang, J., & Brown, J. (2003). On generalized multiple-instance learning (Technical Report UNL-CSE-2003-5). CS Dept., Univ. Nebraska, Lincoln, NE.Google ScholarGoogle Scholar
  24. Settles, B., Craven, M., & Ray, S. (2008). Multiple-instance active learning. In Adv. Neural Inf. Process. Syst. 20, 1289--1296. Cambridge, MA: MIT Press.Google ScholarGoogle Scholar
  25. Stanfill, C., & Waltz, D. (1986). Toward memory-based reasoning. Comm. ACM, 29, 1213--1228. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Tenenbaum, J. B., de Silva, V., & Langford, J. C. (2000). A global geometric framework for nonlinear dimensionality reduction. Science, 290, 2319--2323.Google ScholarGoogle ScholarCross RefCross Ref
  27. Viola, P., Platt, J., & Zhang, C. (2006). Multiple instance boosting for object detection. In Adv. Neural Inf. Process. Syst. 18, 1419--1426. Cambridge, MA: MIT Press.Google ScholarGoogle Scholar
  28. Wang, H.-Y., Yang, Q., & Zha, H. (2008). Adaptive p-posterior mixture-model kernels for multiple instance learning. Proc. 25th Intl. Conf. Mach. Learn. (pp. 1136--1143). Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Wang, J., & Zucker, J.-D. (2000). Solving the multi-instance problem: A lazy learning approach. Proc. 17th Intl. Conf. Mach. Learn. (pp. 1119--1125). Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Weidmann, N., Frank, E., & Pfahringer, B. (2003). A two-level learning method for generalized multi-instance problem. Proc. 14th Eur. Conf. Mach. Learn. (pp. 468--479).Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Xu, X., & Frank, E. (2004). Logistic regression and boosting for labeled bags of instances. Proc. 8th Pac.-Asia Conf. Knowl. Discov. Data Min. (pp. 272--281).Google ScholarGoogle ScholarCross RefCross Ref
  32. Zhang, C., & Viola, P. (2008). Multiple-instance pruning for learning efficient cascade detectors. In Adv. Neural Inf. Process. Syst. 20, 1681--1688. Cambridge, MA: MIT Press.Google ScholarGoogle Scholar
  33. Zhang, M.-L., & Zhou, Z.-H. (2006). Adapting RBF neural networks to multi-instance learning. Neural Process. Lett., 23, 1--26. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Zhang, Q., & Goldman, S. A. (2002). EM-DD: An improved multi-instance learning technique. In Adv. Neural Inf. Process. Syst. 14, 1073--1080. Cambridge, MA: MIT Press.Google ScholarGoogle Scholar
  35. Zhang, Q., Yu, W., Goldman, S. A., & Fritts, J. E. (2002). Content-based image retrieval using multiple-instance learning. Proc. 19th Intl. Conf. Mach. Learn. (pp. 682--689). Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Zhou, Z.-H., & Xu, J.-M. (2007). On the relation between multi-instance learning and semi-supervised learning. Proc. 24th Intl. Conf. Mach. Learn. (pp. 1167--1174). Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Zhou, Z.-H., & Zhang, M.-L. (2007). Multi-instance multi-label learning with application to scene classification. In Adv. Neural Inf. Process. Syst. 19, 1609--1616. Cambridge, MA: MIT Press.Google ScholarGoogle Scholar

Index Terms

  1. Multi-instance learning by treating instances as non-I.I.D. samples

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in
          • Published in

            cover image ACM Other conferences
            ICML '09: Proceedings of the 26th Annual International Conference on Machine Learning
            June 2009
            1331 pages
            ISBN:9781605585161
            DOI:10.1145/1553374

            Copyright © 2009 Copyright 2009 by the author(s)/owner(s).

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 14 June 2009

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • research-article

            Acceptance Rates

            Overall Acceptance Rate140of548submissions,26%

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader