skip to main content
research-article

Planarity, Determinants, Permanents, and (Unique) Matchings

Published:01 March 2010Publication History
Skip Abstract Section

Abstract

Viewing the computation of the determinant and the permanent of integer matrices as combinatorial problems on associated graphs, we explore the restrictiveness of planarity on their complexities and show that both problems remain as hard as in the general case, that is, GapL- and P- complete. On the other hand, both bipartite planarity and bimodal planarity bring the complexity of permanents down (but no further) to that of determinants. The permanent or the determinant modulo 2 is complete for ⊕L, and we show that parity of paths in a layered grid graph (which is bimodal planar) is also complete for this class. We also relate the complexity of grid graph reachability to that of testing existence/uniqueness of a perfect matching in a planar bipartite graph.

References

  1. Allender, E. 2004. Arithmetic circuits and counting complexity classes. In Complexity of Computations and Proofs, J. Krajicek, Ed. Quaderni di Matematica Vol. 13. 33--72.Google ScholarGoogle Scholar
  2. Allender, E., Beals, R., and Ogihara, M. 1999a. The complexity of matrix rank and feasible systems of linear equations. Comput. Complex 8, 2, 99--126. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Allender, E., Rheinhardt, K., and Zhou, S. 1999b. Isolation, matching and counting: Uniform and nonuniform upper bounds. J. Comput. Syst. Sci. 59, 164--181. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Allender, E., Datta, S., and Roy, S. 2005. The directed planar reachability problem. In Proceedings of the 25th Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS). Lecture Notes in Computer Science vol. 3821. Springer, 238--249. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Allender, E., Barrington, D. A. M., Chakraborty, T., Datta, S., and Roy, S. 2009. Planar and grid graph reachability problems. Theory Comput. Syst. 45, 4, 675--723. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Allender, E. and Mahajan, M. 2004. The complexity of planarity testing. Inf. Comput. 189, 1, 117--134. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Arora, S. and Barak, B. 2009. Computational Complexity: A Modern Approach. Cambridge University Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Barrington, D. 1989. Bounded-Width polynomial size branching programs recognize exactly those languages in NC1. J. Comput. Syst. Sci. 38, 150--164. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Barrington, D. A. M. 2002. Grid graph reachability problems. Dogstuhl Seminar on Complexity of Boolean Funcions, seminar number 02121.Google ScholarGoogle Scholar
  10. Bourke, C., Tewari, R., and Vinodchandran, N. V. 2007. Directed planar reachability is in unambiguous logspace. In Proceedings of the 22nd IEEE Conference on Computational Complexity (CCC). IEEE, 217--221. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Bourke, C., Tewari, R., and Vinodchandran, N. V. 2009. Directed planar reachability is in unambiguous log-space. ACM Trans. Comput. Theory 1, 1, 1--17. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Chakraborty, T. and Datta, S. 2006. One-Input-Face MPCVP is hard for L, but in LogDCFL. In Proceedings of the 26th Conference on Foundations of Software Technology and Theoretical Computer Science (FST TCS) Conference. Lecture Notes in Computer Science, vol. 4337. Springer, 57--68. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Chandra, A., Stockmeyer, L., and Vishkin, U. 1984. Constant depth reducibility. SIAM J. Comput. 13, 2, 423--439.Google ScholarGoogle ScholarCross RefCross Ref
  14. Cook, S. A. and McKenzie, P. 1987. Problems complete for L. J. Algor. 8, 385--394. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Damm, C. 1991. DET=L(#L). Tech. rep. Informatik--Preprint 8, Fachbereich Informatik der Humboldt--Universität zu Berlin.Google ScholarGoogle Scholar
  16. Datta, S., Kulkarni, R., Limaye, N., and Mahajan, M. 2007. Planarity, determinants, permanents, and (unique) matchings. In Proceedings of the International Computer Science Symposium in Russia (CSR). Lecture Notes in Computer Science, vol. 4649. Springer, 115--126. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Datta, S., Kulkarni, R., and Roy, S. 2008. Deterministically isolating a perfect matching in bipartite planar graphs. In Proceedings of the 25th International Symposium on Theoretical Aspects of Computer Science (STACS’08). S. Albers and P. Weil, Eds. Leibniz International Proceedings in Informatics (LIPIcs), vol. 1. 229--240.Google ScholarGoogle Scholar
  18. Delcher, A. L. and Kosaraju, S. R. 1995. An NC algorithm for evaluating monotone planar circuits. SIAM J. Comput. 24, 2, 369--375. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Dyer, M. E. and Frieze, A. M. 1986. Planar 3DM is NP-complete. J. Algor 7, 2, 174--184. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Hansen, K. 2006. Constant width planar computation characterizes ACC0. Theory Comput. Syst. 39, 1, 79--92.Google ScholarGoogle ScholarCross RefCross Ref
  21. Hertrampf, U., Reith, S., and Vollmer, H. 2000. A note on closure properties of logspace MOD classes. Inform. Process. Lett. 75, 3, 91--93. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Hesse, W., Allender, E., and Barrington, D. 2002. Uniform constant-depth threshold circuits for division and iterated multiplication. J. Comput. Syst. Sci. 65, 695--716. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Hoang, T. M., Mahajan, M., and Thierauf, T. 2006. On the bipartite unique perfect matching problem. In Proceedings of the 33rd International Colloquium on Automata, Languages and Programming (ICALP). Lecture Notes in Computer Science, vol. 4051. Springer, 453--464. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Hunt, III, H. B., Marathe, M. V., Radhakrishnan, V., and Stearns, R. E. 1998. The complexity of planar counting problems. SIAM J. Comput. 27, 4, 1142--1167. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Immerman, N. 1987. Languages which capture complexity classes. SIAM J. Comput. 4, 760--778. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Kulkarni, R., Mahajan, M., and Varadarajan, K. R. 2008. Some perfect matchings and perfect half-integral matchings in NC. Chicago J. Theor. Comput. Sci. 4.Google ScholarGoogle ScholarCross RefCross Ref
  27. Limaye, N., Mahajan, M., and Sarma, J. M. N. 2009. Upper bounds for monotone planar circuit value and variants. Comput. Complex. 18, 3, 377--412. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Mahajan, M., Subramanya, P. R., and Vinay, V. 2004. The combinatorial approach yields an NC algorithm for computing Pfaffians. Discr. Appl. Math. 143, 1--3, 1--16. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Mahajan, M. and Vinay, V. 1997. Determinant: Combinatorics, algorithms, complexity. Chicago J. Theor. Comput. Sci. 5. http://www.cs.uchicago.edu/publications/cjtcs.Google ScholarGoogle ScholarCross RefCross Ref
  30. Mohar, B. and Thomassen, C. 2001. Graphs on Surfaces. John Hopkins University Press.Google ScholarGoogle Scholar
  31. Papadimitriou, C. M. 1994. Computational Complexity. Addison-Wesley, Reading. MA.Google ScholarGoogle Scholar
  32. Reingold, O. 2005. Undirected st-connectivity in log-space. In Proceedings of the 37th Annual ACM Symposium on Theory of Computing (STOC’05). ACM, New York, 376--385. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Reinhardt, K. and Allender, E. 2000. Making nondeterminism unambiguous. SIAM J. Comp. 29, 1118--1131. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Toda, S. 1991. Counting problems computationally equivalent to the determinant. Tech. rep. CSIM 91-07, Department of Computer Science Information Mathematics, University of Electro-Communications, Chofu-shi, Tokyo.Google ScholarGoogle Scholar
  35. Vadhan, S. 2001. The complexity of counting in sparse, regular, and planar graphs. SIAM J. Comput. 31, 2, 398--427. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Valiant, L. G. 1979. The complexity of computing the permanent. Theor. Comput. Sci. 8, 189--201.Google ScholarGoogle ScholarCross RefCross Ref
  37. Valiant, L. G. 1992. Why is boolean complexity theory difficult? In Boolean Function Complexity, M. S. Paterson, Ed. Cambridge University Press. London Mathematical Society Lecture Notes Series 169.Google ScholarGoogle Scholar
  38. Vazirani, V. 1989. NC algorithms for computing the number of perfect matchings in K 3,3-free graphs and related problems. Inform. Comput. 80, 2, 152--164. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Vinay, V. July 1991. Semi-Unboundedness and complexity classes. Ph.D. thesis, Indian Institute of Science, Bangalore.Google ScholarGoogle Scholar
  40. Xia, M. and Zhao, W. 2006. #3-regular bipartite planar vertex cover is #p-complete. In Proceedings of the 3rd International Conference on Theory and Applications of Models of Computation (TAMC). Lecture Notes in Computer Science, vol. 3959. Springer, 356--364. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Yang, H. 1991. An NC algorithm for the general planar monotone circuit value problem. In Proceedings of 3rd IEEE Symposium on Parallel and Distributed Processing. IEEE, 196--203.Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Zankó, V. 1991. #P-completeness via many-one reductions. Int. J. Found. Comput. Sci. 2, 1, 77--82.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Planarity, Determinants, Permanents, and (Unique) Matchings

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Transactions on Computation Theory
          ACM Transactions on Computation Theory  Volume 1, Issue 3
          March 2010
          64 pages
          ISSN:1942-3454
          EISSN:1942-3462
          DOI:10.1145/1714450
          Issue’s Table of Contents

          Copyright © 2010 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 1 March 2010
          • Accepted: 1 December 2009
          • Revised: 1 November 2009
          • Received: 1 May 2009
          Published in toct Volume 1, Issue 3

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article
          • Research
          • Refereed

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader