skip to main content
10.1145/1806689.1806781acmconferencesArticle/Chapter ViewAbstractPublication PagesstocConference Proceedingsconference-collections
research-article

Non-commutative circuits and the sum-of-squares problem

Published:05 June 2010Publication History

ABSTRACT

We initiate a direction for proving lower bounds on the size of non-commutative arithmetic circuits. This direction is based on a connection between lower bounds on the size of non-commutative arithmetic circuits and a problem about commutative degree four polynomials, the classical sum-of-squares problem: find the smallest n such that there exists an identity (x12+x22+•• + xk2)• (y1^2+y22+•• + yk2)= f12+f22+ ... +fn2, where each fi = fi(X,Y) is bilinear in X={x1,... ,xk} and Y={y1,..., yk}. Over the complex numbers, we show that a sufficiently strong super-linear lower bound on n in, namely, n ≥ k1+ε with ε >0, implies an exponential lower bound on the size of arithmetic circuits computing the non-commutative permanent.

More generally, we consider such sum-of-squares identities for any M polynomial h(X,Y), namely: h(X,Y) = f12+f22+...+fn2.

Again, proving n ≥ k1+ε in for any explicit h over the complex numbers gives an exponential lower bound for the non-commutative permanent. Our proofs relies on several new structure theorems for non-commutative circuits, as well as a non-commutative analog of Valiant's completeness of the permanent.

We proceed to prove such super-linear bounds in some restricted cases. We prove that n ≥ Ω(k6/5) in (1), if f1,..., fn are required to have integer coefficients. Over the real numbers, we construct an explicit M polynomial h such that n in (2) must be at least Ω(k2). Unfortunately, these results do not imply circuit lower bounds. We also present other structural results about non-commutative arithmetic circuits. We show that any non-commutative circuit computing an ordered non-commutative polynomial can be efficiently transformed to a syntactically multilinear circuit computing that polynomial. The permanent, for example, is ordered. Hence, lower bounds on the size of syntactically multilinear circuits computing the permanent imply unrestricted non-commutative lower bounds. We also prove an exponential lower bound on the size of non-commutative syntactically multilinear circuit computing an explicit polynomial. This polynomial is, however, not ordered and an unrestricted circuit lower bound does not follow.

References

  1. A. Barvinok. A simple polynomial time algorithm to approximatethe permanent within a simply exponential factor. Random Structures and Algorithms 14(1), pages 29--61, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. W. Baur and V. Strassen. The complexity of partial derivatives. Theoretical computer science (22), pages 317--330, 1983.Google ScholarGoogle Scholar
  3. P. Burgisser. Completeness and reduction in algebraic complexity theory. Springer-Verlag Berlin Heidelberg 2000.Google ScholarGoogle Scholar
  4. S. Chien and A. Sinclair. Algebras with polynomial identities and computing the determinant. SIAM Journal on Computing 37, pages 252--266, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. S. Chien, L. Rasmussen and A. Sinclair. Clifford algebras an approximating the permanent. STOC '02, pages 222--231, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. J. von zur Gathen. Algebraic complexity theory. Ann. Rev. Comp. Sci. (3), pages 317--347, 1988. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. C. Godsil and I. Gutman. On the matching polynomial of a graph. Algebraic Methods in Graph Theory, pages 241--249, 1981.Google ScholarGoogle Scholar
  8. L. Hyafil. On the parallel evaluation of multivariate polynomials. SIAM J. Comput. 8(2), pages 120--123, 1979.Google ScholarGoogle Scholar
  9. P. Hrubes and A. Yehudayoff. Homogeneous formulas and symmetric polynomials. arXiv:0907.2621 Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. P. Hrubes, A. Wigderson and A. Yehudayoff. Relationless completeness and separations. To appear in CCC. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. A. Hurwitz. Über die Komposition der quadratischen Formen von beliebigvielen Variabeln. Nach. Ges. der Wiss. Göttingen, pages 309--316, 1898.Google ScholarGoogle Scholar
  12. A. Hurwitz. Über die Komposition der quadratischen Formen. Math. Ann., 88, pages 1--25, 1923.Google ScholarGoogle ScholarCross RefCross Ref
  13. I. M. James. On the immersion problem for real projective spaces. Bull. Am. Math. Soc., 69, pages 231--238, 1967.Google ScholarGoogle ScholarCross RefCross Ref
  14. M. Jerrum, A. Sinclair and E. Vigoda. A polynomial-time approximation algorithm for the permanent of a matrix with nonnegative entries. J. ACM 51(4), pages 671--697, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. S. Jukna Boolean function complexity: advances and frontiers. Book in preparation. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. N. Karmarkar, R. Karp, R. Lipton, L. Lovasz and M. Luby. A Monte-Carlo algorithm for estimating the permanent. SIAM Journal on Computing 22(2), pages 284--293, 1993. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. T. Kirkman. On pluquatemions, and horaoid products of sums of n squares. Philos.Mag. (ser. 3), 33, pages 447--459; 494--509, 1848.Google ScholarGoogle Scholar
  18. K. Y. Lam. Some new results on composition of quadratic forms. Inventiones Mathematicae., 1985.Google ScholarGoogle ScholarCross RefCross Ref
  19. T. Y. Lam and T. Smith. On Yuzvinsky's monomial pairings. Quart. J. Math. Oxford. (2), 44, pages 215--237, 1993.Google ScholarGoogle ScholarCross RefCross Ref
  20. K. Mulmuley. On P vs. NP, Geometric Complexity Theory, and the Riemann Hypothesis. Technical Report, Computer Science department, The University of Chicago, 2009.Google ScholarGoogle Scholar
  21. N. Nisan. Lower bounds for non-commutative computation. STOC '91, pages 410--418, 1991. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. N. Nisan and A. Wigderson. Lower bounds on arithmetic circuits via partial derivatives. Computational Complexity, vol. 6, pages 217--234, 1996. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. A. Pfister. Zur Darstellung definiter Funktionen als Summe von Quadraten. ph Inventiones Mathematicae., 1967.Google ScholarGoogle Scholar
  24. J. Radon. Lineare scharen orthogonalen matrizen. Abh. Math. Sem. Univ. Hamburg 1, pages 2--14, 1922.Google ScholarGoogle Scholar
  25. R. Raz. Multi-linear formulas for permanent and determinant are of super-polynomial size. Journal of the Association for Computing Machinery 56 (2), 2009. ıgnore Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. R. Raz. Elusive functions and lower bounds for arithmetic circuits. To appear in Theory of Computing. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. R. Raz and A. Yehudayoff. Lower bounds and separation for constant depth multilinear circuits. Proceedings of Computational Complexity, pages 128--139, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. R. Raz, A. Shpilka and A. Yehudayoff. A lower bound for the size of syntactically multilinear arithmetic circuits. SIAM Journal on Computing 38 (4), pages 1624--1647, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. D. B. Shapiro. Composition of quadratic forms. W. de Gruyter Verlag, 2000.Google ScholarGoogle Scholar
  30. . Strassen. Die berechnungskomplexitat von elementarsymmetrischen funktionen und von interpolationskoeffizienten. Numerische Mathematik (20), pages 238--251, 1973.Google ScholarGoogle Scholar
  31. V. Strassen. Vermeidung von Divisionen. J. Reine Angew. Math. 264, pages 182--202, 1973.Google ScholarGoogle Scholar
  32. L. G. Valiant. Completeness classes in algebra. STOC '79, pages 249--261. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. S. Winograd. On the number of multiplications needed to compute certain functions. Comm. on Pure and Appl. Math. (23), pages 165--179, 1970.Google ScholarGoogle Scholar
  34. P. Yiu. Sums of squares formulae with integer coefficients. Canad. Math. Bull., 30, pages 318--324, 1987.Google ScholarGoogle ScholarCross RefCross Ref
  35. P. Yiu. On the product of two sums of 16 squares as a sum of squares of integral bilinear forms. Quart. J. Math. Oxford. (2), 41, pages 463--500, 1990.Google ScholarGoogle ScholarCross RefCross Ref
  36. S. Yuzvinsky. A series of monomial pairings. phLinear and multilinear algebra, 15, pages 19--119, 1984.Google ScholarGoogle Scholar

Index Terms

  1. Non-commutative circuits and the sum-of-squares problem

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      STOC '10: Proceedings of the forty-second ACM symposium on Theory of computing
      June 2010
      812 pages
      ISBN:9781450300506
      DOI:10.1145/1806689

      Copyright © 2010 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 5 June 2010

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      Overall Acceptance Rate1,469of4,586submissions,32%

      Upcoming Conference

      STOC '24
      56th Annual ACM Symposium on Theory of Computing (STOC 2024)
      June 24 - 28, 2024
      Vancouver , BC , Canada

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader