skip to main content
10.1145/1807085.1807126acmconferencesArticle/Chapter ViewAbstractPublication PagespodsConference Proceedingsconference-collections
research-article

When data dependencies over SQL tables meet the logics of paradox and S-3

Authors Info & Claims
Published:06 June 2010Publication History

ABSTRACT

We study functional and multivalued dependencies over SQL tables with NOT NULL constraints. Under a no-information interpretation of null values we develop tools for reasoning. We further show that in the absence of NOT NULL constraints the associated implication problem is equivalent to that in propositional fragments of Priest's paraconsistent Logic of Paradox. Subsequently, we extend the equivalence to Boolean dependencies and to the presence of NOT NULL constraints using Schaerf and Cadoli's S-3 logics where S corresponds to the set of attributes declared NOT NULL. The findings also apply to Codd's interpretation "value at present unknown" utilizing a weak possible world semantics. Our results establish NOT NULL constraints as an effective mechanism to balance the expressiveness and tractability of consequence relations, and to control the degree by which the existing classical theory of data dependencies can be soundly approximated in practice.

References

  1. M. Arenas and L. Libkin. A normal form for XML documents. ACM Trans. Database Syst., 29(1):195--232, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. W. W. Armstrong. Dependency structures of database relationships. Information Processing, 74:580--583, 1974.Google ScholarGoogle Scholar
  3. P. Atzeni and N. Morfuni. Functional dependencies and constraints on null values in database relations. Information and Control, 70(1):1--31, 1986. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. C. Beeri. On the membership problem for functional and multivalued dependencies in relational databases. ACM Trans. Database Syst., 5(3):241--259, 1980. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. C. Beeri and P. Bernstein. Computational problems related to the design of normal form relational schemas. ACM Trans. Database Syst., 4(1):30--59, 1979. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. C. Beeri, R. Fagin, and J. H. Howard. A complete axiomatization for functional and multivalued dependencies in database relations. In SIGMOD, pages 47--61. ACM, 1977. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. J. Biskup. Inferences of multivalued dependencies in fixed and undetermined universes. Theor. Comput. Sci., 10(1):93--106, 1980.Google ScholarGoogle ScholarCross RefCross Ref
  8. J. Biskup and S. Link. Appropriate reasoning about data dependencies in fixed and undetermined universes. In FoIKS, pages 58--77, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. M. Bojanczyk, A. Muscholl, T. Schwentick, and L. Segoufin. Two-variable logic on data trees and XML reasoning. J. ACM, 56(3), 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. M. Cadoli and M. Schaerf. On the complexity of entailment in propositional multivalued logics. Ann. Math. Artif. Intell., 18(1):29--50, 1996.Google ScholarGoogle ScholarCross RefCross Ref
  11. E. F. Codd. A relational model of data for large shared data banks. Commun. ACM, 13(6):377--387, 1970. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. E. F. Codd. Extending the database relational model to capture more meaning. ACM Trans. Database Syst., 4(4):397--434, 1979. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. C. Delobel. Normalization and hierarchical dependencies in the relational data model. ACM Trans. Database Syst., 3(3):201--222, 1978. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. C. Delobel and M. Adiba. Relational database systems. North Holland, 1985. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. R. Fagin. Functional dependencies in a relational data base and propositional logic. IBM Journal of Research and Development, 21(6):543--544, 1977. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. R. Fagin. Multivalued dependencies and a new normal form for relational databases. ACM Trans. Database Syst., 2(3):262--278, 1977. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. R. Fagin, P. Kolaitis, R. Miller, and L. Popa. Data exchange: semantics and query answering. Theor. Comput. Sci., 336(1):89--124, 2005. Google ScholarGoogle ScholarCross RefCross Ref
  18. Z. Galil. An almost linear-time algorithm for computing a dependency basis in a relational database. J. ACM, 29(1):96--102, 1982. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. K. Hagihara, M. Ito, K. Taniguchi, and T. Kasami. Decision problems for multivalued dependencies in relational databases. SIAM J. Comput., 8(2):247--264, 1979.Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. S. Hartmann and S. Link. Characterising nested database dependencies by fragments of propositional logic. Ann. Pure Appl. Logic, 152(1-3):84--106, 2008.Google ScholarGoogle ScholarCross RefCross Ref
  21. S. Hartmann and S. Link. Efficient reasoning about a robust XML key fragment. ACM Trans. Database Syst., 34(2), 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. S. Hartmann and S. Link. Numerical constraints on XML data. Inf. Comput., 208(5):521--544, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. T. Imielinski and W. Lipski Jr. Incomplete information in relational databases. J. ACM, 31(4):761--791, 1984. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. S. Kolahi. Dependency-preserving normalization of relational and XML data. J. Comput. Syst. Sci., 73(4):636--647, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. M. Levene and G. Loizou. Axiomatisation of functional dependencies in incomplete relations. Theor. Comput. Sci., 206(1-2):283--300, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. M. Levene and G. Loizou. Database design for incomplete relations. ACM Trans. Database Syst., 24(1):80--125, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. H. Levesque. A knowledge-level account of abduction. In IJCAI, pages 1061--1067, 1989. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. E. Lien. On the equivalence of database models. J. ACM, 29(2):333--362, 1982. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. W.-D. Langeveldt and S. Link. Empirical evidence for the usefulness of Armstrong relations in the acquisition of meaningful functional dependencies. Inf. Syst., 35(5):352--374, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. S. Link. On the implication of multivalued dependencies in partial database relations. Int. J. Found. Comput. Sci., 19(3):691--715, 2008.Google ScholarGoogle ScholarCross RefCross Ref
  31. P. Marquis and N. Porquet. Resource-bounded paraconsistent inference. Ann. Math. Artif. Intell., 39:349--384, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. J. Paredaens, P. De Bra, M. Gyssens, and D. Van Gucht. The Structure of the Relational Database Model. Springer, 1989. Google ScholarGoogle ScholarCross RefCross Ref
  33. G. Priest. Logic of paradox. Journal of Philosophical Logic, 8:219--241, 1979.Google ScholarGoogle ScholarCross RefCross Ref
  34. Y. Sagiv. An algorithm for inferring multivalued dependencies with an application to propositional logic. J. ACM, 27(2):250--262, 1980. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Y. Sagiv, C. Delobel, D. S. Parker Jr., and R. Fagin. An equivalence between relational database dependencies and a fragment of propositional logic. J. ACM, 28(3):435--453, 1981. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. M. Schaerf and M. Cadoli. Tractable reasoning via approximation. Artif. Intell., 74:249--310, 1995. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. D. Toman and G. Weddell. On keys and functional dependencies as first-class citizens in description logics. J. Autom. Reasoning, 40(2-3):117--132, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. M. Vardi. The complexity of relational query languages. In STOC, pages 137--146, 1982. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. M. Vincent, J. Liu, and C. Liu. Strong functional dependencies and their application to normal forms in XML. ACM Trans. Database Syst., 29(3):445--462, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. G. Weddell. Reasoning about functional dependencies generalized for semantic data models. ACM Trans. Database Syst., 17(1):32--64, 1992. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. J. Wijsen. Temporal FDs on Complex Objects. ACM Trans. Database Syst., 24(1):127--176, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. M. Wu. The practical need for fourth normal form. In ACM SIGCSE, pages 19--23, 1992. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. C. Zaniolo. Database relations with null values. J. Comput. Syst. Sci., 28(1):142--166, 1984.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. When data dependencies over SQL tables meet the logics of paradox and S-3

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        PODS '10: Proceedings of the twenty-ninth ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems
        June 2010
        350 pages
        ISBN:9781450300339
        DOI:10.1145/1807085

        Copyright © 2010 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 6 June 2010

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

        Acceptance Rates

        PODS '10 Paper Acceptance Rate27of113submissions,24%Overall Acceptance Rate642of2,707submissions,24%

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader