skip to main content
10.1145/1810959.1810984acmconferencesArticle/Chapter ViewAbstractPublication PagessocgConference Proceedingsconference-collections
research-article

Kinetic stable Delaunay graphs

Published:13 June 2010Publication History

ABSTRACT

The best known upper bound on the number of topological changes in the Delaunay triangulation of a set of moving points in ℜ2 is (nearly) cubic, even if each point is moving with a fixed velocity. We introduce the notion of a stable Delaunay graph (SDG in short), a dynamic subgraph of the Delaunay triangulation, that is less volatile in the sense that it undergoes fewer topological changes and yet retains many useful properties of the full Delaunay triangulation. SDG is defined in terms of a parameter ± > 0, and consists of Delaunay edges pq for which the (equal) angles at which p and q see the corresponding Voronoi edge epq are at least ±. We prove several interesting properties of SDG and describe two kinetic data structures for maintaining it. Both structures use O*(n) storage. They process O*(n2) events during the motion, each in O*(1) time, provided that the points of P move along algebraic trajectories of bounded degree; the O*(·) notation hides multiplicative factors that are polynomial in 1/± and polylogarithmic in n. The first structure is simpler but the dependency on 1/± in its performance is higher.

References

  1. P. K. Agarwal, J. Gao, L. Guibas, H. Kaplan, V. Koltun, N. Rubin and M. Sharir, Kinetic stable Delaunay graphs, http://www.cs.tau.ac.il/~rubinnat/StableF.pdf. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. P. K. Agarwal, H. Kaplan and M. Sharir, Kinetic and dynamic data structures for closest pair and all nearest neighbors, ACM Trans. Algorithms 5 (1) (2008), Art. 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. P. K. Agarwal, Y. Wang and H. Yu, A 2D kinetic triangulation with near-quadratic topological changes, Discrete Comput. Geom. 36 (2006), 573--592. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. N. Amenta and M. Bern, Surface reconstruction by Voronoi filtering, Discrete Comput. Geom., 22 (1999), 481--504.Google ScholarGoogle ScholarCross RefCross Ref
  5. N. Amenta, M. W. Bern and D. Eppstein, The crust and beta-skeleton: combinatorial curve reconstruction, Graphic. Models and Image Processing 60 (2) (1998), 125--135. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. F. Aurenhammer and R. Klein,Voronoi diagrams, in Handbook of Computational Geometry, J.-R. Sack and J. Urrutia, Eds.,Elsevier, Amsterdam, 2000,pages 201--290.Google ScholarGoogle Scholar
  7. J. Basch, L. J. Guibas and J. Hershberger, Data structures for mobile data, J. Algorithms 31 (1) (1999), 1--28. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. L. P. Chew, Near-quadratic bounds for the L 1 Voronoi diagram of moving points, Comput. Geom. Theory Appl. 7 (1997), 73--80. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. L. P. Chew and R. L. Drysdale, Voronoi diagrams based on convex distance functions, Proc. First Annu. ACM Sympos. Comput. Geom., 1985, pp. 235--244. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. B. Delaunay, Sur la sphère vide. A la memoire de Georges Voronoi, Izv. Akad. Nauk SSSR, Otdelenie Matematicheskih i EstestvennyhNauk 7 (1934), 793--800.Google ScholarGoogle Scholar
  11. H. Edelsbrunner, Geometry and Topology for Mesh Generation, Cambridge University Press, Cambride, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. L. J. Guibas, Modeling motion, In J. E. Goodman and J. O'Rourke, editors, Handbook of Discreteand Computational Geometry. CRC Press, Inc., Boca Raton, FL, USA, second edition, 2004, pages 1117--1134.Google ScholarGoogle Scholar
  13. L. J. Guibas, Kinetic data structures - a state of the art report, In P. K. Agarwal, L. E. Kavraki and M. Mason, editors, Proc. Workshop Algorithmic Found. Robot., pages 191--209. A. K. Peters, Wellesley, MA, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. L. J. Guibas, J. S. B. Mitchell and T. Roos, Voronoi diagrams of moving points in the plane, Proc. 17th Internat. Workshop Graph-Theoret. Concepts Comput. Sci., volume 570 of Lecture Notes Comput. Sci., pages 113--125. Springer-Verlag, 1992. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. C. Icking, R. Klein, N.-M. Lê and L. Ma, Convex distance functions in 3-space are different, Fundam. Inform. 22 (4) (1995), 331--352. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. H. Kaplan, N. Rubin and M. Sharir, A kinetic triangulation scheme for moving points in the plane, this proceedings.Google ScholarGoogle Scholar
  17. D. Kirkpatrick and J. D. Radke, A framework for computational morphology, Computational Geometry (G. Toussaint, ed.), North-Holland (1985), 217--248.Google ScholarGoogle Scholar
  18. D. Leven and M. Sharir, Planning a purely translational motion for a convex object in two-dimensional space using generalized Voronoi diagrams, Discrete Comput. Geom. 2 (1987), 9--31.Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. K. Mehlhorn, Data Structures and Algorithms 1: Sorting and Searching, Springer Verlag, Berlin 1984.Google ScholarGoogle Scholar
  20. J. Nievergelt and E. M. Reingold, Binary search trees of bounded balance, SIAM J. Comput. 2 (1973), 33--43.Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. M. Sharir and P. K. Agarwal, Davenport-Schinzel Sequences and Their Geometric Applications, Cambridge University Press, New York, 1995. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Kinetic stable Delaunay graphs

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        SoCG '10: Proceedings of the twenty-sixth annual symposium on Computational geometry
        June 2010
        452 pages
        ISBN:9781450300162
        DOI:10.1145/1810959

        Copyright © 2010 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 13 June 2010

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

        Acceptance Rates

        Overall Acceptance Rate625of1,685submissions,37%

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader