skip to main content
10.1145/1866029.1866074acmconferencesArticle/Chapter ViewAbstractPublication PagesuistConference Proceedingsconference-collections
research-article

TeslaTouch: electrovibration for touch surfaces

Authors Info & Claims
Published:03 October 2010Publication History

ABSTRACT

We present a new technology for enhancing touch interfaces with tactile feedback. The proposed technology is based on the electrovibration principle, does not use any moving parts and provides a wide range of tactile feedback sensations to fingers moving across a touch surface. When combined with an interactive display and touch input, it enables the design of a wide variety of interfaces that allow the user to feel virtual elements through touch. We present the principles of operation and an implementation of the technology. We also report the results of three controlled psychophysical experiments and a subjective user evaluation that describe and characterize users' perception of this technology. We conclude with an exploration of the design space of tactile touch screens using two comparable setups, one based on electrovibration and another on mechanical vibrotactile actuation.

Skip Supplemental Material Section

Supplemental Material

233u-bau.mov

mov

24.5 MB

References

  1. }}3M. Microtouch technology brief. Available from: http://solutions.3m.com.Google ScholarGoogle Scholar
  2. }}Bau, O., U. Petrevski, and W. Mackay. BubbleWrap: a textile-based electromagnetic haptic display. in CHI'2009, Ext. Abstracts. 2009: ACM. pp. 3607--3612. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. }}Benko, H., A. Wilson, and R. Balakrishnan. Sphere: multi-touch interactions on a spherical display. in UIST'2008. 2008: ACM. pp. 77--86. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. }}Biet, M., F. Giraud, and B. Lemaire-Semail, Implementation of tactile feedback by modifying the percieved friction. The European Physical Journal: Applied Physics, 2008. 43(1): pp. 123--135.Google ScholarGoogle ScholarCross RefCross Ref
  5. }}Brewster, S., F. Chohan, and L. Brown. Tactile feedback for mobile interactions. in CHI'2007. 2007: ACM. pp. 159--162. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. }}Buxton, W., R. Hill, and P. Rowley. Issues and Techniques in Touch-Sensitive Tablet Input. in SIGGRAPH'85. 1985: ACM. pp. 215--224. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. }}Collins, A., Tactile television - mechanical and electrical image projection. IEEE Transactions on Man-Machine Systems, 1970: pp. 65--71.Google ScholarGoogle Scholar
  8. }}Dietz, P. and D. Leigh. DiamondTouch: A Multi-User Touch Technology. in UIST. 2001: ACM. pp. 219--226. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. }}Forlines, C. and R. Balakrishnan. Evaluating tactile feedback and direct vs. indirect stylus input in pointing and crossing selection tasks. in CHI'08. 2008: ACM. pp. 1563--1572. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. }}Fukumoto, M. and S. Toshiaki. ActiveClick: Tactile Feedback for Touch Panels. in CHI'2001, Extended Abstracts. 2001: ACM. pp. 121--122. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. }}Gescheider, G. A., Psychophysics: The Fundamentals. 3rd edition. 1997: Psychology Press.Google ScholarGoogle Scholar
  12. }}Han, J. Low-cost multi-touch sensing through frustrated total internal reflection. in UIST'05. 2005: ACM. pp. 115--118. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. }}Harrison, C. and S. Hudson. Providing dynamically changeable physical buttons on a visual display. in CHI'2009. 2009: ACM. pp. 299--308. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. }}Hinckley, K., R. Pausch, D. Proffitt, J. Patten, and N. Kassell. Cooperative bimanual action. in CHI'97. 1997: ACM. pp. 27--34. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. }}Israr, A., S. Choi, and H. Z. Tan. Detection Threshold and Mechanical Impedance of the Hand in a Pen-Hold Posture. in IEEE/RSJ Intern. Conference on Intelligent Robots and Systems. 2006: IEEE. pp. 472--477.Google ScholarGoogle Scholar
  16. }}Israr, A., H. Z. Tan, and C. M. Reed, Frequency and amplitude discrimination along the kinesthetic-cutaneous continuum in the presence of masking stimuli. The Journal of the Acoustical society of America, 2006. 120(5): pp. 2789--2800.Google ScholarGoogle Scholar
  17. }}Kaczmarek, K., K. Nammi, A. Agarwal, M. Tyler, S. Haase, and D. Beebe, Polarity effect in electrovibration for tactile display. IEEE Transactions on Biomedical Engineering, 2006. 10(53): pp. 2047--2054.Google ScholarGoogle ScholarCross RefCross Ref
  18. }}Kaczmarek, K., J. Webster, P. Pach-y-Rita, and W. Tompkins, Electrotactile and vibrotactile displays for sensory substitution systems. IEEE Transactions on Biomedical Engineering, 1991. 38(1): pp. 1--16.Google ScholarGoogle ScholarCross RefCross Ref
  19. }}Lee, J., P. Dietz, D. Leigh, W. Yerazunis, and S. Hudson. Haptic Pen: A Tactile feedback stylus for touch screens. in UIST'2004. 2004: ACM. pp. 291--294. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. }}Leek, M. R., Adaptive procedures in psychophysical research. Perception and Psychophysics, 2001. 63(8): pp. 1279--1292.Google ScholarGoogle ScholarCross RefCross Ref
  21. }}Levitt, H., Transformed up-down methods in psychoacoustics. The Journal of the Acoustical society of America, 1971. 49(2): pp. 467--477.Google ScholarGoogle Scholar
  22. }}Luk, J., J. Pasquero, S. Little, K. MacLean, V. Levesque, V. Hayward. A role for haptics in mobile interaction: Initial design using a handheld tactile display prototype. in CHI'06. 2006: ACM. pp. 171--180. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. }}Mallinckrodt, E., A. Hughes, and W. Sleator, Perception by the Skin of Electrically Induced Vibrations. Science, 1953. 118(3062): pp. 277--278.Google ScholarGoogle ScholarCross RefCross Ref
  24. }}Matsushita, N. and J. Rekimoto. HoloWall: designing a finger, hand, body and object sensitive wall. in UIST'97. 1997: ACM. pp. 209--210. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. }}Miller, T. and R. Zeleznik. The design of 3D haptic widgets. in Symposium on Interactive 3D Graphics. 1999: ACM. pp. 97--102. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. }}Olwal, A., S. Feiner, and S. Heyman. Rubbing and tapping for precise and rapid selection on touch-screen displays. in CHI'08. 2008: ACM. pp. 295--304. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. }}Poupyrev, I. and S. Maruyama. Tactile interfaces for small touch screens. in UIST. 2003: ACM. pp. 217--220. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. }}Poupyrev, I. and S. Maruyama, Method and programming for haptics display and feedback, Japan Patent Office, P2008-257629. 2008.Google ScholarGoogle Scholar
  29. }}Poupyrev, I., H. Newton-Dunn, and O. Bau. D20: Interaction with Multifaceted Display Devices. in CHI'2006, Extended Abstract. 2006. pp. 1241--1246. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. }}Poupyrev, I., M. Okabe, and S. Maruyama. Haptic Feedback for Pen Computing: Directions and Strategies. in CHI'2004. 2004: ACM. pp. 1309--1310. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. }}Senseg. Available from: http://www.senseg.com/.Google ScholarGoogle Scholar
  32. }}Strong, R. M. and D. E. Troxel, An electrotactile display. IEEE Transactions on Man-Machine Systems, 1970. 11(1): pp. 72--79.Google ScholarGoogle ScholarCross RefCross Ref
  33. }}Tang, H. and D. Beebe, A microfabricated electrostatic haptic display for persons with visual imairments. IEEE Transactions on Rehabilitation Engineering, 1998. 6(3): pp. 241--248.Google ScholarGoogle ScholarCross RefCross Ref
  34. }}Verrillo, R. T. and G. A. Gescheider, Perception via the sense of touch, in Tactile Aids for the Hearing Impaired, I.R. Summers, Editor. 1992, Whurr Publishers: London. pp. 1--36.Google ScholarGoogle Scholar
  35. }}Watanabe, T. and S. Fukui. A method of contolling tactile sensation of surface roughness using ultrasonic vibrations. in International Conference on Robotics and Automation. 1995: IEEE. pp. 1134--1139.Google ScholarGoogle Scholar
  36. }}Webster, J., Editor. Medical instrumentation: Application and design. 3rd ed. 1998, Wiley. p. 691.Google ScholarGoogle Scholar
  37. }}Yamamoto, A., S. Nagasawa, H. Yamamoto, and T. Higuchi, Electrostatic tactile display with thin film slider and its application to tactile telepresentation systems IEEE Transactions on Visualization and Computer Graphics, 2006. 12(2): pp. 168--177. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. TeslaTouch: electrovibration for touch surfaces

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in
        • Published in

          cover image ACM Conferences
          UIST '10: Proceedings of the 23nd annual ACM symposium on User interface software and technology
          October 2010
          476 pages
          ISBN:9781450302715
          DOI:10.1145/1866029

          Copyright © 2010 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 3 October 2010

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article

          Acceptance Rates

          Overall Acceptance Rate842of3,967submissions,21%

          Upcoming Conference

          UIST '24

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader