skip to main content
research-article
Free Access

Vision-based hand-gesture applications

Published:01 February 2011Publication History
Skip Abstract Section

Abstract

Body posture and finger pointing are a natural modality for human-machine interaction, but first the system must know what it's seeing.

Skip Supplemental Material Section

Supplemental Material

gerry-feb2011_wachs_vision-based.mp4

mp4

42.7 MB

References

  1. Bannach, D., Amft, O., Kunze, K.S., Heinz, E.A. Tröster, G., and Lukowicz, P. Waving real-hand gestures recorded by wearable motion sensors to a virtual car and driver in a mixed-reality parking game. In Proceedings of the Second IEEE Symposium on Computational Intelligence and Games (Honolulu, Apr. 1--5, 2007), 32--39.Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Baudel, T. and Beaudouin-Lafon, M. Charade Remote control of objects using FreeHand gestures. Commun. ACM 36, 7 (July 1993), 28--35 Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Becker, D.A. and Pentland, T. Staying alive: A virtual reality visualization tool for cancer patients. In Proceedings of the AAAI Workshop on Entertainment and Alife/AI. AAAI Technical Report WS-96-03, 1996.Google ScholarGoogle Scholar
  4. Belongie, S., Malik, J., and Puzicha, J. Shape matching and object recognition using shape contexts. Transactions on Pattern Analysis and Machine Intelligence 24, 24 (Apr. 2002), 509--522. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Boian, R., Sharma, R., Han, C., Merians, A., Burdea, G., Adamovich, S., Recce, M., Tremaine, M., and Poizner, H. Virtual reality-based post-stroke hand rehabilitation. Studies in Health and Technology Information (2002), 64--70.Google ScholarGoogle Scholar
  6. Bolt, R.A. 'Put-That-There': Voice and gesture at the graphics interface. In Proceedings of the Seventh International Conference on Computer Graphics and Interactive Techniques. ACM Press, New York, 1980, 262--270. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Bradski, G.R. Computer-vision face tracking for use in a perceptual user interface. Intel Technology Journal (Q2 1998).Google ScholarGoogle Scholar
  8. Brashear, H., Henderson, V., Park, K., Hamilton, H., Lee, S., and Starner, T. American Sign Language recognition in game development for deaf children. In Proceedings of ACM SIGACCESS Conference on Assistive Technologies (Portland, OR, Oct. 23--25). ACM Press, New York, 2006, 79--86. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Calinon, S. and Billard, A. Incremental learning of gestures by imitation in a humanoid robot. In Proceedings of the ACM/IEEE International Conference on Human-Robot Interaction (Arlington, VA, 2007), 255--262. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Chen, Y.T. and Tseng, K.T. Developing a multiple-angle hand-gesture-recognition system for human-machine interactions. In Proceedings of the 33rd Annual Conference of the IEEE Industrial Electronics Society (Taipei, Nov. 5--8, 2007), 489--492.Google ScholarGoogle ScholarCross RefCross Ref
  11. Cohen, P.R., Johnston, M., McGee, D., Oviatt, S., Pittman, J., Smith, I., Chen, L., and Clow, J. QuickSet: Multimodal interaction for distributed applications. In Proceedings of the Fifth ACM international Conference on Multimedia (Seattle, WA, Nov. 9--13). ACM Press, New York, 1997, 10--13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Cootes, T.F. and Taylor, C.J. Active shape models: 'smart snakes.' In Proceedings of the British Machine-Vision Conference (Leeds, Sept. 22--24). Springer, Berlin, 1992, 266--275.Google ScholarGoogle Scholar
  13. Freeman, W. and Roth, M. Orientation histograms for hand-gesture recognition. In Proceedings of the IEEE International Conference on Automatic Face and Gesture Recognition (Zurich, June 1995).Google ScholarGoogle Scholar
  14. Freeman, W.T., Tanaka, K., Ohta, J., and Kyuma, K. Computer vision for computer games. In Proceedings of the IEEE International Conference on Automatic Face and Gesture Recognition (Zurich, June 1995), 296--301. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Fruijtier, S., Dulk, P.D., and Dias, E. Collaborative interaction and integrated spatial information and services in disaster management. In Proceedings of the 2008 IEEE International Workshop on Horizontal Interactive Human Computer System (Amsterdam, Oct. 1--3, 2008), 43--45.Google ScholarGoogle Scholar
  16. Graetzel, C., Fong, T.W., Grange, C., and Baur, C. A non-contact mouse for surgeon-computer interaction. Technology and Health Care 12, 3 (Aug. 24, 2004), 245--257. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Grange, S., Fong, T., and Baur, C. M/ORIS: A medical/operating room interaction system. In Proceedings of the ACM International Conference on Multimodal Interfaces (State College, PA, 2004). ACM Press, New York, 2004, 159--166. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Gutierrez, M., Lemoine, P., Thalmann, D., and Vexo, F. Telerehabilitation: Controlling haptic virtual environments through handheld interfaces. In Proceedings of ACM Symposium on Virtual Reality Software and Technology (Hong Kong, Nov. 10--12), ACM Press, New York, 2004, 195--200. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Hasanuzzaman, M., Ampornaramveth, V., Zhang, T., Bhuiyan, M.A., Shirai, Y., and Ueno, H. Real-time vision-based gesture recognition for human-robot interaction. In Proceedings of the IEEE International Conference on Robotics and Biomimetics (Shenyang, China, Aug. 22--26, 2004), 413--418.Google ScholarGoogle ScholarCross RefCross Ref
  20. Höysniemi, J., Hämäläinen, P., Turkki, L., and Rouvi, T. Children's intuitive gestures in vision-based action games. Commun. ACM 48, 1 (Jan. 2005), 44--50. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Kang, H., Lee, C., and Jung, K. Recognition-based gesture spotting in video games. Pattern Recognition Letters 25, 15 (Nov. 2004), 1701--1714. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Kawarazaki, N. Hoya, I., Nishihara, K., and Yoshidome, T. Cooperative welfare robot system using handgesture instructions. Lecture Notes in Control and Information Sciences 306, Springer, Berlin, 2004, 143--153.Google ScholarGoogle Scholar
  23. Kela, J., Korpipää, P., Mäntyjärvi, J., Kallio, S., Savino, G., Jozzo, L., and Marca, D. Accelerometer-based gesture control for a design environment. Personal and Ubiquitous Computing 10, 5 (July 2006), 285--299. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Kölsch, M., Turk, M., and Höllerer, T. Vision-based interfaces for mobility. In Proceedings of the International Conference on Mobile and Ubiquitous Systems (Boston, Aug. 22--26, 2004), 86--94.Google ScholarGoogle ScholarCross RefCross Ref
  25. Kortenkamp, D., Huber, E., and Bonasso, R. Recognizing and interpreting gestures on a mobile robot. In Proceedings of the 13th Conference on Artificial Intelligence (Portland, OR, Aug. 4--8, 1996), 915--921. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Krahnstoever, N., Kettebekov, S., Yeasin, M., and Sharma, R. A real-time framework for natural multimodal interaction with large-screen displays. In Proceedings of the Fourth IEEE International Conference on Multimodal Interfaces (Pittsburgh, PA Oct. 14--16). IEEE Computer Society, Washington, D.C., 2002, 349. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Krueger, M.W. Artificial Reality, Second Ed. Addison-Wesley, Redwood City, CA, 1991.Google ScholarGoogle Scholar
  28. Kuno, Y., Murashima, T., Shimada, N., and Shirai, Y. Intelligent wheelchair remotely controlled by interactive gestures. In Proceedings of 15th International Conference on Pattern Recognition (Barcelona, Sept. 3--7, 2000), 672--675. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Lucas, B.D. and Kanade, T. An iterative imageregistration technique with an application to stereo vision. In Proceedings of the Seventh International Joint Conference on Artificial Intelligence. Morgan Kaufmann Publishers, Inc., San Francisco, 1981, 674--679. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Lukowicz, P., Timm-Giel, A., Lawo, M., and Herzog, O. WearIT@Work: Toward real-world industrial wearable computing. IEEE Pervasive Computing 6, 4 (Oct. 2007), 8--13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Micire, M.J. and Yanco, H.A. Improving disaster response with multi-touch technologies. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (San Diego, Oct. 29--Nov. 2, 2007), 2567--2568.Google ScholarGoogle Scholar
  32. Minnen, D., Westeyn, T., and Starner, T. Performance metrics and evaluation issues for continuous activity recognition. In Proceedings of Performance Metrics in Intelligent Systems Workshop (Aug. 21--23). NIST, Gaithersburg, MD, 2008.Google ScholarGoogle Scholar
  33. Nickel, K. and Stiefelhagen, R. Visual recognition of pointing gestures for human-robot interaction. Image and Vision Computing 25, 12 (Dec. 2007), 1875--1884. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Nielsen, M., Storring, M., Moeslund, T.B., and Granum, E. A Procedure for Developing Intuitive and Ergonomic Gesture Interfaces for Man-Machine Interaction. Technical Report CVMT 03-01. Aalborg University, Aalborg, Denmark, Mar. 2003.Google ScholarGoogle Scholar
  35. Nishikawa, A., Hosoi, T., Koara, K., Negoro, D., Hikita, A., Asano, S., Kakutani, H., Miyazaki, F., Sekimoto, M., Yasui, M., Miyake, Y., Takiguchi, S., and Monden, M. FAce MOUSe: A novel human-machine interface for controlling the position of a laparoscope. IEEE Transactions on Robotics and Automation 19, 5 (Oct. 2003), 825--841.Google ScholarGoogle ScholarCross RefCross Ref
  36. Patel, R. and Roy, D. Teachable interfaces for individuals with dysarthric speech and severe physical disabilities. In Proceedings of the AAAI Workshop on Integrating Artificial Intelligence and Assistive Technology (Madison, WI, July 26--30, 1998), 40--47.Google ScholarGoogle Scholar
  37. Pentland, A. and Becker, D. Sensei: A Real-Time Recognition, Feedback, and Training System for T'ai Chi Gestures. Masters Thesis. Harvard University, Cambridge, MA, 1997.Google ScholarGoogle Scholar
  38. Potter, S.S. and Bressler, J.R. Subjective Workload Assessment Technique (SWAT): A User's Guide. Interim Report, 1998.Google ScholarGoogle Scholar
  39. Raskar, R., Welch, G., Cutts, M., Lake, A., Stesin, L., and Fuchs, H. The office of the future: A unified approach to image-based modeling and spatially immersive displays. In Proceedings of SIGGRAPH (Orlando, FL, July 19--24). ACM Press, New York, 1998, 179--188. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Rauschert, I., Agrawal, P., Sharma, R., Fuhrmann, S., Brewer, I., and MacEachren, A.M. Designing a human-centered, multimodal GIS interface to support emergency management. In Proceedings of the 10th ACM International Symposium on Advances in Geographic Information Systems (McLean, VA, Nov. 8--9). ACM Press, New York, 2002, 119--124. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Rogalla, O., Ehrenmann, M., Zöllner, R., Becher, R., and Dillmann, R. Using gesture and speech control for commanding a robot assistant. In Proceedings of the IEEE International Workshop on Robot and Human Interactive Communication (Berlin, Sept. 25--27, 2002), 454--459.Google ScholarGoogle ScholarCross RefCross Ref
  42. Schlömer, T., Poppinga, B., Henze, N., and Boll, S. Gesture recognition with a Wii controller. In Proceedings of the Second International Conference on Tangible and Embedded Interaction (Bonn, Germany, Feb. 18--20). ACM Press, New York, 2008, 11--14. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Sheridan, T. and Ferrell, W. Remote manipulative control with transmission delay. IEEE Transactions on Human Factors in Electronics 4, 1 (1963), 25--29.Google ScholarGoogle Scholar
  44. Starner, T., Auxier, J., Ashbrook, D., and Gandy, M. The gesture pendant: A self-illuminating, wearable, infrared computer-vision system for home-automation control and medical monitoring. In Proceedings of the Fourth International Symposium on Wearable Computers (Atlanta, Oct. 2000), 87--94. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Starner, T., Leibe, B., Singletary, B., and Pair, J. Mindwarping: Towards creating a compelling collaborative augmented reality game. In Proceedings of the Fifth International Conference on Intelligent User Interfaces (New Orleans, Jan. 9--12). ACM Press, New York, 2000, 256--259. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Stern, H.I., Wachs, J.P., and Edan, Y. Designing hand-gesture vocabularies for natural interaction by combining psycho-physiological and recognition factors (special issue on gesture in multimodal systems). International Journal of Semantic Computing 2, 1 (Mar. 2008), 137--160.Google ScholarGoogle ScholarCross RefCross Ref
  47. Thomas, J.J. and Cook, K.A., Eds. Illuminating the Path: The Research and Development Agenda for Visual Analytics. IEEE CS Press, 2005.Google ScholarGoogle Scholar
  48. Triesch, J. and Malsburg, C.V.D. Robotic gesture recognition by cue combination. Gesture and Sign Language in Human-Computer Interaction. Lecture Notes in Computer Science. Springer, Berlin, 1998, 233--244. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Viola, P. and Jones, M. Robust real-time object detection. International Journal of Computer Vision 57, 2 (May 2004), 137--154. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Wachs, J., Stern, H., Edan, Y., Gillam, M., Feied, C., Smith, M., and Handler, J. A hand-gesture sterile tool for browsing MRI images in the OR. Journal of the American Medical Informatics Association 15, 3 (May--June 2008), 321--323.Google ScholarGoogle Scholar
  51. Wachs, J.P. Optimal Hand-Gesture Vocabulary Design Methodology for Virtual Robotic Control. Ph.D. Thesis, Department of Industrial Engineering and Management, Ben-Gurion University of the Negev, Be'er She'eva, Israel, 2007.Google ScholarGoogle Scholar
  52. Ward, J.A., Lukowicz, P., Troster, G., and Starner, T.E. Activity recognition of assembly tasks using body-worn microphones and accelerometers. IEEE Transactions on Pattern Analysis and Machine Intelligence 28, 10 (Oct. 2006), 1553--1567. Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. Yin, X. and Zhu, X. Hand-posture recognition in gesture-based human-robot interaction. In Proceedings of the IEEE Conference on Industrial Electronics and Applications (Singapore, May 24--26, 2006), 1--6.Google ScholarGoogle ScholarCross RefCross Ref
  54. Yuan, Q., Sclaroff, S., and Athitsos, V. Automatic 2D Hand tracking in video sequences. In Proceedings of the IEEE Workshop on Applications of Computer Vision (Breckenridge, CO, Jan. 5--7). IEEE Computer Society Press, 2005, 250--256. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Vision-based hand-gesture applications

                        Recommendations

                        Comments

                        Login options

                        Check if you have access through your login credentials or your institution to get full access on this article.

                        Sign in

                        Full Access

                        • Published in

                          cover image Communications of the ACM
                          Communications of the ACM  Volume 54, Issue 2
                          February 2011
                          115 pages
                          ISSN:0001-0782
                          EISSN:1557-7317
                          DOI:10.1145/1897816
                          Issue’s Table of Contents

                          Copyright © 2011 ACM

                          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

                          Publisher

                          Association for Computing Machinery

                          New York, NY, United States

                          Publication History

                          • Published: 1 February 2011

                          Permissions

                          Request permissions about this article.

                          Request Permissions

                          Check for updates

                          Qualifiers

                          • research-article
                          • Popular
                          • Refereed

                        PDF Format

                        View or Download as a PDF file.

                        PDF

                        eReader

                        View online with eReader.

                        eReader

                        HTML Format

                        View this article in HTML Format .

                        View HTML Format