skip to main content
research-article

Variational inference with graph regularization for image annotation

Authors Info & Claims
Published:24 February 2011Publication History
Skip Abstract Section

Abstract

Image annotation is a typical area where there are multiple types of attributes associated with each individual image. In order to achieve better performance, it is important to develop effective modeling by utilizing prior knowledge. In this article, we extend the graph regularization approaches to a more general case where the regularization is imposed on the factorized variational distributions, instead of posterior distributions implicitly involved in EM-like algorithms. In this way, the problem modeling can be more flexible, and we can choose any factor in the problem domain to impose graph regularization wherever there are similarity constraints among the instances. We formulate the problem formally and show its geometrical background in manifold learning. We also design two practically effective algorithms and analyze their properties such as the convergence. Finally, we apply our approach to image annotation and show the performance improvement of our algorithm.

References

  1. Attias, H. 2000. A variational Bayesian framework for graphical models. Adv. Neural Info. Proc. Syst. 12, 209--215.Google ScholarGoogle Scholar
  2. Barnard, K., Duygulu, P., Forsyth, D., de Freitas, N., Blei, D. M., and Jordan, M. I. 2003. Matching words and pictures. J. Mach. Learn. Res. 3, 1107--1135. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Belkin, M. and Niyogi, P. 2001. Laplacian eigenmaps and spectral techniques for embedding and clustering. In Proceedings of the Conference on Advances in Neural Information Processing Systems 14, 585--591.Google ScholarGoogle Scholar
  4. Belkin, M., Niyogi, P., and Sindhwani, V. 2006. Manifold regularization: A geometric framework for learning from labeled and unlabeled examples. J. Mach. Learn. Res. 7, 2399--2434. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Bilmes, J. 2004. On virtual evidence and soft evidence in Bayesian networks. Tech. rep. UWEETR-2004-0016, Department of EE, University of Washington.Google ScholarGoogle Scholar
  6. Bishop, C. M. 2007. Pattern Recognition and Machine Learning. Springer.Google ScholarGoogle Scholar
  7. Blei, D., Ng, A., and Jordan, M. 2003. Latent dirichlet allocation. J. Mach. Learn. Res. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Blei, D. M. and Jordan, M. I. 2003. Modeling annotated data. In Proceedings of the ACM International Conference on Research and Development in Informaion Retrieval (ACM SIGIR). 127--134. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Bousquet, O., Boucheron, S., and Lugosi, G. 2003. Introduction to statistical learning theory. In Advanced Lectures on Machine Learning. 169--207.Google ScholarGoogle Scholar
  10. Cai, D., Mei, Q., Han, J., and Zhai, C. 2008. Modeling hidden topics on document manifold. In Proceedings of the ACM Conference on Information and Knowledge Management (CIKM'08). 911--920. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Chang, E. and Sychay, G. 2003. CBSA: Content-based soft annotation for multimodal image retrieval using bayes point machines. IEEE Trans. Circ. Syst. Video Tech. 13, 26--38. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Chang, J. and Blei, D. 2009. Relational topic models for document networks. In Proceedings of Conference on AI and Statistics.Google ScholarGoogle Scholar
  13. Chung, F. R. K. 1997. Spectral Graph Theory. Regional Conference Series in Mathematics, vol. 92. AMS.Google ScholarGoogle Scholar
  14. Csurka, G., Dance, C. R., Fan, L., Willamowski, J., and Bray, C. 2004. Visual categorization with bags of keypoints. In Proceedings of the Workshop on Statistical Learning in Computer Vision (ECCV). 1--22.Google ScholarGoogle Scholar
  15. Hastie, T., Tibshirani, R., and Friedman, J. H. 2001. The Elements of Statistical Learning. Springer-Verlag.Google ScholarGoogle Scholar
  16. He, X. 2010. Laplacian regularized d-optimal design for active learning and its application to image retrieval. Trans. Img. Proc. 19, 1, 254--263. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. He, X., Cai, D., Shao, Y., Bao, H., and Han, J. 2009a. Laplacian regularized gaussian mixture model for data clustering. IEEE Trans. Knowl. Data Engin. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. He, X., Ji, M., and Bao, H. 2009b. Graph embedding with constraints. In Proceedings of the 21st International Jont Conference on Artifical Intelligence (IJCAI'09). Morgan Kaufmann Publishers Inc., San Francisco, CA, 1065--1070. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. He, X., Ji, M., and Bao, H. 2009c. A unified active and semi-supervised learning framework for image compression. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 65--72.Google ScholarGoogle Scholar
  20. He, X., Ji, M., and Bao, H. 2009d. A unified active and semi-supervised learning framework for image compression. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 65--72.Google ScholarGoogle Scholar
  21. Hofmann, T. 1999. Probabilistic latent semantic indexing. In Proceedings of the ACM International Conference on Research and Development in Information Retrieval (SIGIR'05). ACM, 50--57. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Hofmann, T. 2001. Unsupervised learning by probabilistic latent semantic analysis. Mach. Learn. 42, 1-2, 177--196. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Jordan, M. I., Ed. 1999. Learning in Graphical Models. MIT Press, Cambridge, MA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Jordan, M. I., Ghahramani, Z., Jaakkola, T. S., and Saul, L. K. 1999. An introduction to variational methods for graphical models. In Learning in Graphical Models. MIT Press, Cambridge, MA, 105--161. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Li, L.-J., Socher, R., and Fei-Fei, L. 2009. Towards total scene understanding:classification, annotation and segmentation in an automatic framework. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Google ScholarGoogle Scholar
  26. Mei, Q., Cai, D., Zhang, D., and Zhai, C. 2008. Topic modeling with network regularization. In Proceedings of the ACM International Conference on World Wide Web (WWW'08). 101--110. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Minka, T. P. 2003. Estimating a dirichlet distribution. http://research.microsoft.com/minka.Google ScholarGoogle Scholar
  28. Monay, F. and Gatica-Perez, D. 2003. On image auto-annotation with latent space models. In Proceedings of the ACM International Conference on Multimedia (SIGMM'03). 275--278. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Monay, F. and Gatica-Perez, D. 2004. pLSA-based image auto-annotation: constraining the latent space. In Proceedings of the ACM International Conference on Multimedia (SIGMM'04). 348--351. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Neal, R. M. and Hinton, G. E. 1999. A view of the em algorithm that justifies incremental, sparse, and other variants. In Learning in Graphical Models. 355--368. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Nocedal, J. and Wright, S. 2006. Numerical Optimization. Springer.Google ScholarGoogle Scholar
  32. Pearl, J. 1988. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann Publishers Inc., San Francisco, CA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Rubner, Y., Tomasi, C., and Guibas, L. J. 2000. The earth mover's distance as a metric for image retrieval. Int. J. Comput. Vis. 40, 2, 99--121. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Shao, Y., Zhou, Y., He, X., Cai, D., and Bao, H. 2009. Semi-supervised topic modeling for image annotation. In Proceedings of the 17th ACM International Conference on Multimedia (MM'09). ACM, New York, 521--524. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Si, S., Tao, D., and Geng, B. 2010. Bregman divergence-based regularization for transfer subspace learning. IEEE Trans. Knowl. Data Engin. 22, 929--942. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Song, D. and Tao, D. 2010. Biologically inspired feature manifold for scene classification. Trans. Img. Proc. 19, 1, 174--184. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Stephen, E. E., Fienberg, S., and Lafferty, J. 2004. Mixed membership models of scientific publications. In Proc. National Acad. Sci.Google ScholarGoogle Scholar
  38. Tao, D., Li, X., Wu, X., and Maybank, S. J. 2009. Geometric mean for subspace selection. IEEE Trans. Patt. Anal. Mach. Intell. 31, 2, 260--274. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Vapnik, V. N. 1995. The Nature of Statistical Learning Theory. Springer-Verlag, Berlin. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Vapnik, V. N. 1998. Statistical Learning Theory. Wiley.Google ScholarGoogle Scholar
  41. Winn, J. and Bishop, C. M. 2005. Variational message passing. J. Mach. Learn. Res. 6, 661--694. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Xing, E. P., Jordan, M. I., and Russell, S. J. 2003. A generalized mean field algorithm for variational inference in exponential families. In Proceedings of the International Conference on Uncertainty in Artificial Intelligence. 583--591. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Zhang, R., Zhang, Z. M., Li, M., Ma, W.-Y., and Zhang, H.-J. 2005. A probabilistic semantic model for image annotation and multi-modal image retrieva. In Proceedings of the IEEE International Conference on Computer Vision (ICCV'05). 846--851. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Zhou, T., Tao, D., and Wu, X. 2010. Manifold elastic net: A unified framework for sparse dimension reduction. Data Min. Knowl. Disc. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Zhu, X., Lafferty, J. and Ghahramani, Z. 2005. Semi-supervised learning using gaussian fields and harmonic functions. In Proceedings of the International Conference on Machine Learning (ICML'05).Google ScholarGoogle Scholar

Index Terms

  1. Variational inference with graph regularization for image annotation

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Intelligent Systems and Technology
        ACM Transactions on Intelligent Systems and Technology  Volume 2, Issue 2
        February 2011
        175 pages
        ISSN:2157-6904
        EISSN:2157-6912
        DOI:10.1145/1899412
        Issue’s Table of Contents

        Copyright © 2011 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 24 February 2011
        • Accepted: 1 July 2010
        • Revised: 1 May 2010
        • Received: 1 February 2010
        Published in tist Volume 2, Issue 2

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article
        • Research
        • Refereed

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader